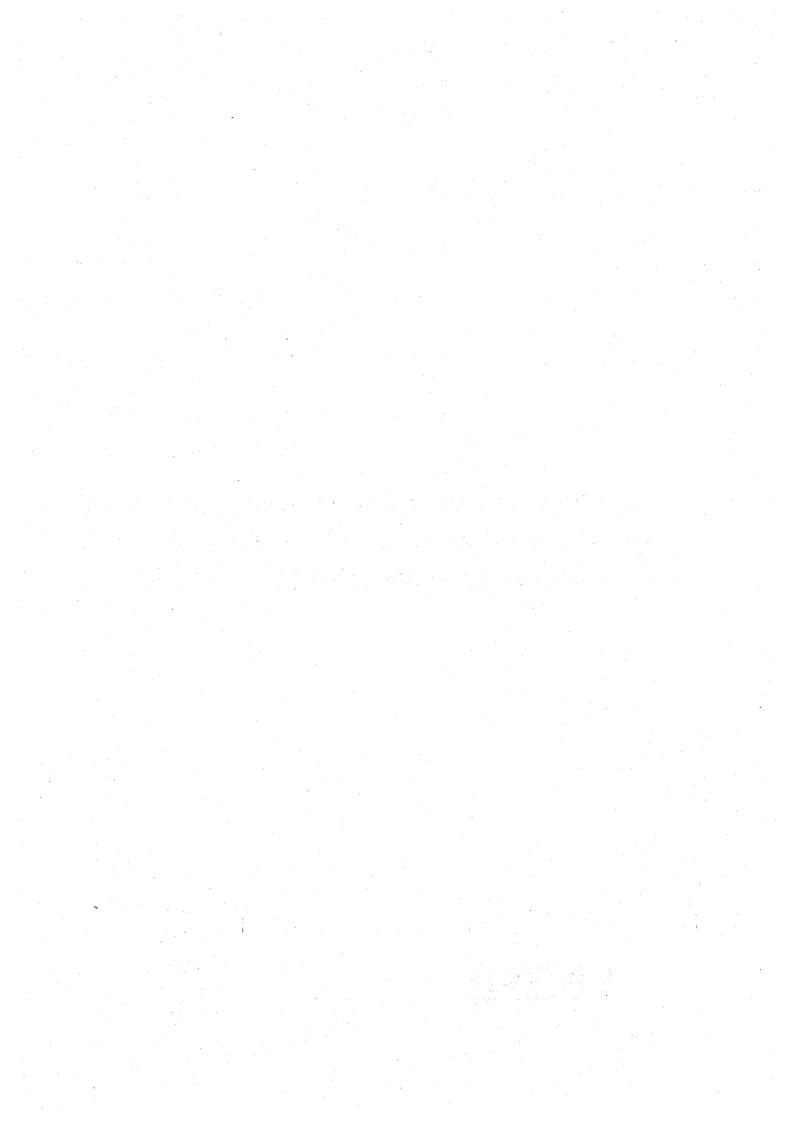


METODO DE CALCULO Y PROYECTO
DE INSTALACIONES DE PUESTA A TIERRA
PARA CENTROS DE TRANSFORMACION
CONECTADOS A REDES DE TERCERA CATEGORIA


METODO DE CALCULO Y PROYECTO DE INSTALACIONES DE PUESTA A TIERRA PARA CENTROS DE TRANSFORMACION CONECTADOS A REDES DE TERCERA CATEGORIA

Elaborado por:

Editado en colaboración con:

INTRODUCCION

La puesta en práctica del Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación (RD 3275/1982) y de sus Instrucciones Técnicas Complementarias (O.M. 18/10/1984) obligó a reconsiderar el contenido de algunas de las citadas ITC, y particularmente la MIE-RAT 13 en lo referente a las Instalaciones de Puesta a Tierra.

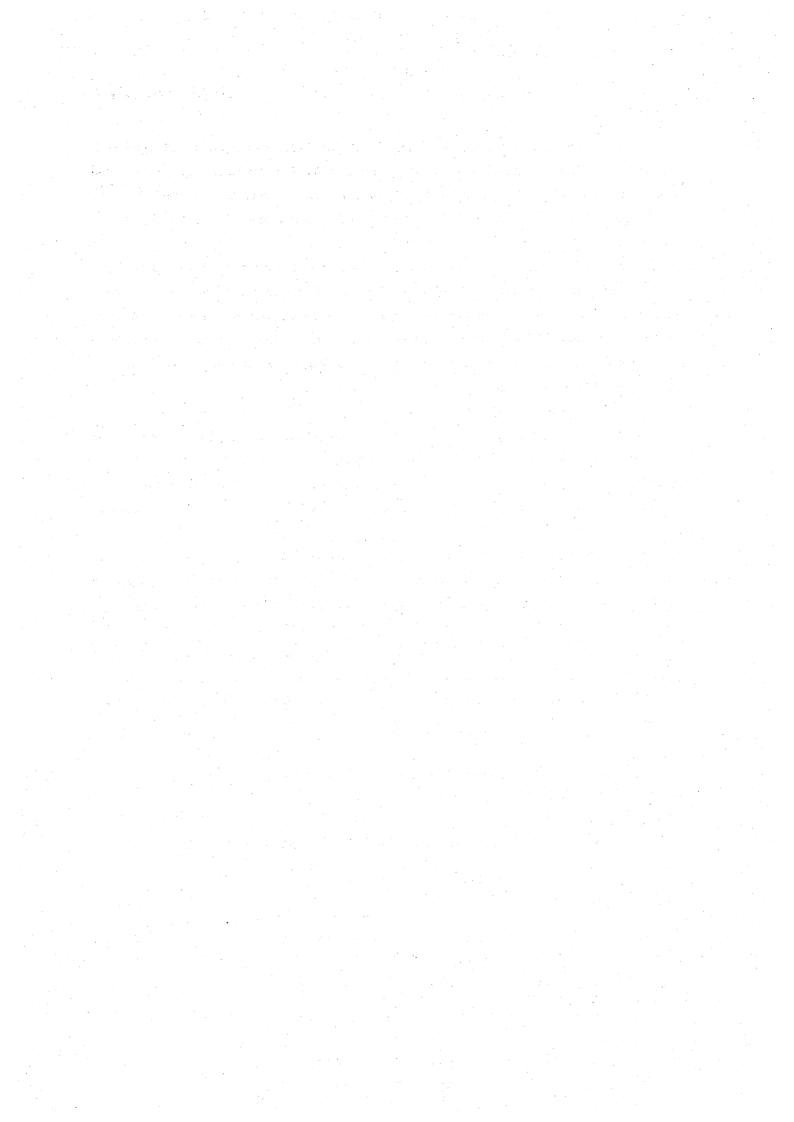
En el apartado 1.1.12 de la citada RAT 13, se señala en su último párrafo "Para instalaciones de tercera categoría que respondan a configuraciones tipo, como es el caso de la mayoría de los centros de transformación, el órgano territorial competente podrá admitir que se omita la realización de las anteriores mediciones, sustituyéndolas por la correspondiente a la resistencia de puesta a tierra, si se ha establecido la correlación, sancionada por la práctica, en situaciones análogas, entre tensiones de paso y contacto y resistencia de puesta a tierra".

Para facilitar la aplicación de esta ITC, la Comisión de Reglamentos procedió al análisis de la Legislación Europea y a la aplicación de la misma en los respectivos países, y posteriormente elaboró un documento que permitiese la aplicación correcta y simplificada de la Legislación Española, con el fin de facilitar al Proyectista una herramienta adecuada a las necesidades que establece nuestra Legislación.

Como consecuencia de ello, y tras numerosos debates con los expertos en el campo de la Puesta a Tierra, se ha elaborado este Documento que creemos responde a las demandas fijadas fijadas por la Legislación y por los Expertos, Consultores, Proyectistas, etc., facilitando la aplicación del Reglamento.

Una vez elaborado el Documento se consideró necesario, antes de proceder a su difusión, dar conocimiento del mismo a las Subdirecciones Generales de Energía Eléctrica y de Seguridad Industrial del Ministerio de Industria y Energía, para su estudio y aporte de las observaciones que considerasen oportunas.

Ello permitió enriquecer el contenido del Documento ajustando parte del mismo a las observaciones que nos fueron hechas por las citadas Subdirecciones Generales.


La Dirección General de la Energía del Ministerio de Industria y Energía ha enviado al Director General de UNESA la carta que se recoge a continuación.

Rogamos a los que utilicen este metodo de cálculo nos comuniquen cualquier observación que permita una mejora del mismo.

COMISION DE REGLAMENTOS

DEL

COMITE DE DISTRIBUCION DE UNESA

Ministerio de Industria y Energía

Dirección General de la Energía MADRID-

DE 19
SGE/EPC/tf/db

S/R

DESTINATARIO

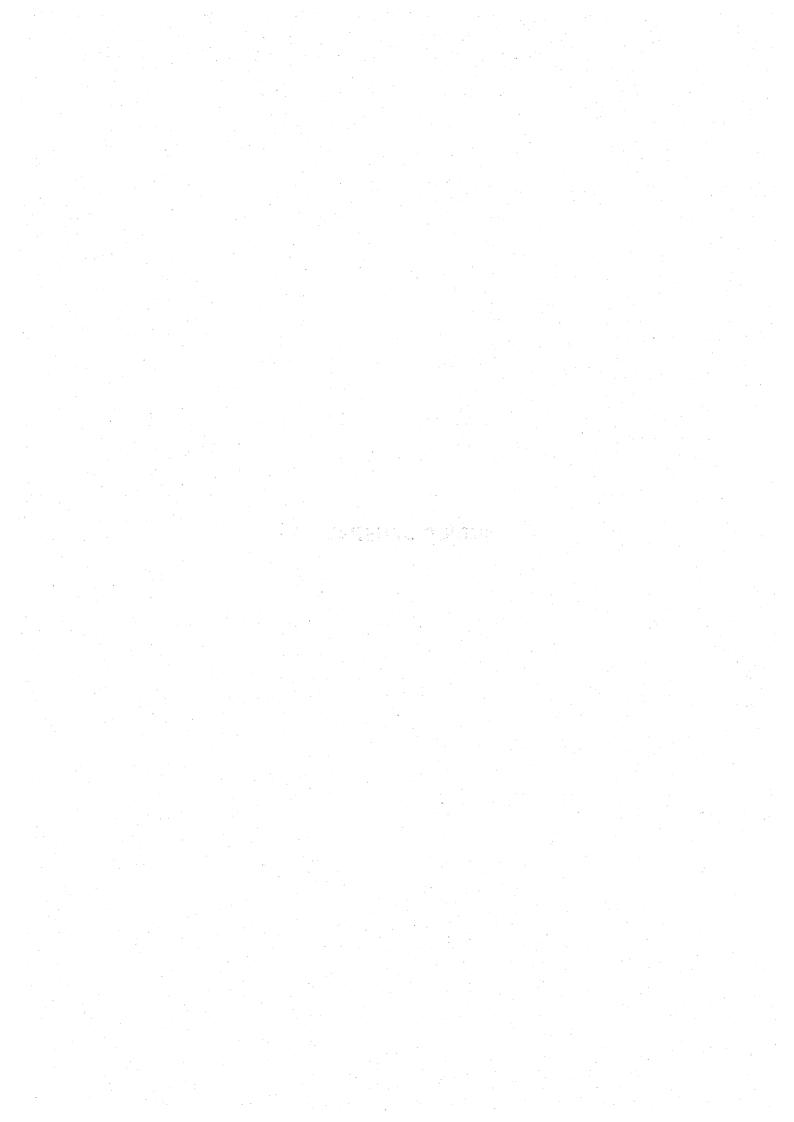
Sr. D. Pedro Rivero. Director General de UNESA. Francisco Gervás, 3 28020-MADRID

ASUNTO: MIE RAT 13.

El cálculo de las instalaciones de tierra, exigido por la nueva regla mentación sobre centros de transformación, resulta para el proyectista eléctrico muy laborioso. La comisión de Reglamentos de UNESA ha desarrollado el "Méto do de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría", que normaliza dicho cálculo, analizando la reglamentación existente, definiendo procedimientos de cálculo y proponiendo diversos ejemplos de aplicación.

Las Subdirecciones Generales de Energía Eléctrica y de Seguridad Indus trial de este Ministerio, han analizado dicha metodología, estimando que cumple el propósito para el que fue preparada, no encontrándose inconveniente en su aplicación para el cálculo de las instalaciones de tercera categoría.

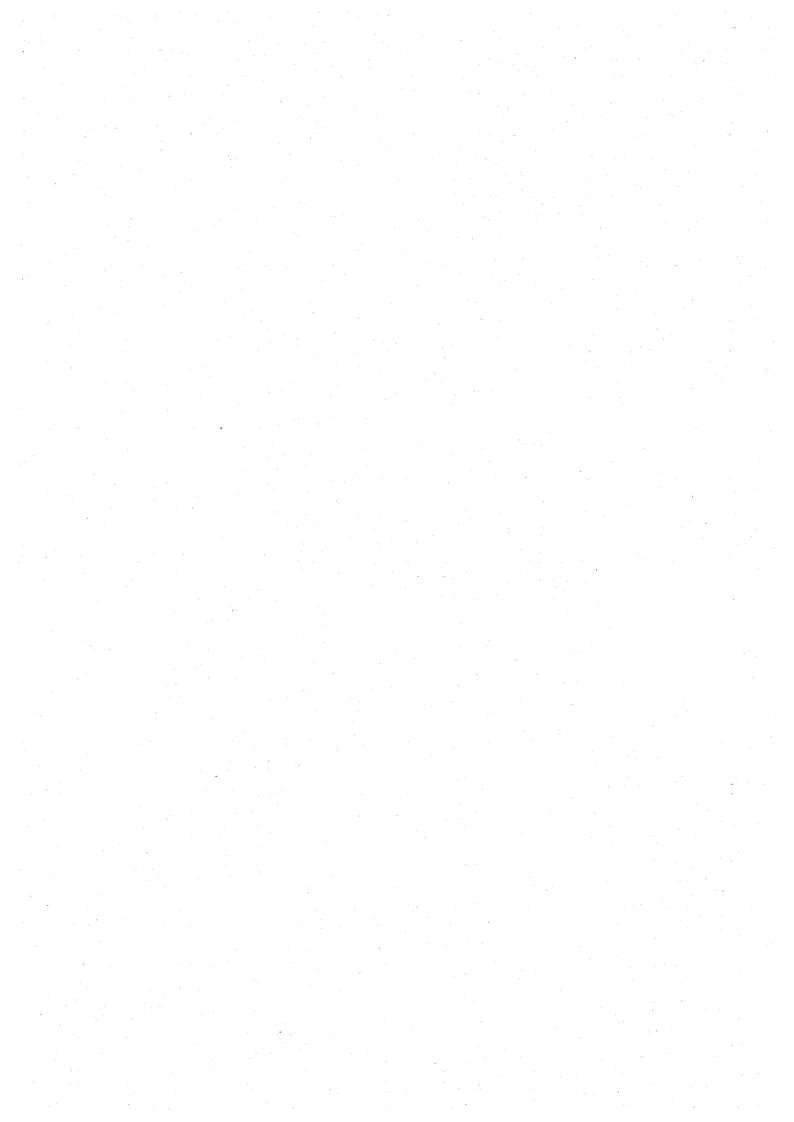
Es de reconocer el trabajo efectuado por la Comisión de Reglamentos de UNESA, ya que se espera que la unificación de criterios de cálculo facilitará la labor del proyectista, redundando por ello en una mayor seguridad de las - instalaciones y por tanto del usuario.


EL SUBDIRECTOR GENERAL
DE EMERGIA ELECTRACA,

Ramón Cal∦o Báguena.

1 1 DIR 8.2.

INDICE GENERAL


UNIDAD ELECTRICA, S.A. COMITE DE DISTRIBUCION COMISION DE REGLAMENTOS (GT de Tierras)

METODO DE CALCULO Y PROYECTO DE INSTALACIONES DE PUESTA A TIERRA PARA CENTROS DE TRANSFORMACION DE TERCERA CATEGORIA

MANUAL TECNICO

Febrero 1989

	<u>C.E.</u> The state of the state o	pág.
1. OBJETO	Y CAMPO DE APLICACION	2
2. CONSIDE	RACIONES SOBRE EL USO DE ELECTRODOS DE TIERRA TIPO	2
3. PRESCRI	PCIONES GENERALES	3
3 1 Sec	juridad de la personas	•
3.1 Set	oretensiones admisibles para las instalaciones de BT del CT	3 7
3.3 Lin	nitaciones del valor de la corriente de defecto.	11
4. PROCEDI	MIENTO DE CALCULO	11
4.1 Inv	restigación de las características del terreno	11
4.2 Det	erminación de las corrientes máximas de puesta a tierra y del	12
4.3 Dis	empo máximo de eliminación del defecto eño preliminar de la instalación de tierra	16
4.4 Cal	culo de la resistencia de puesta a tierra y de las tensiones de paso y	10
	contacto	16
		10
4.4.1	Consideraciones generales	16
4.4.2	Electrodos de tierra. Parámetros característicos	16
4.4.3	Relación entre resistencia de puesta a tierra y tensiones de paso y de contacto	
	ue contacto	17
4.5 Com	probación de que las tensiones de paso y de contacto calculadas n inferiores a los valores máximos admisibles	17
4.5.1	Medidas adicionales de seguridad para las tensiones de contacto	17
	CT en edificio	18
4.5.0	CT sobre apoyos	19
4.5.2	Condiciones a cumplir por el electrodo de tierra	20
4.6 Inv	estigación de las tensiones transferidas al exterior	20
4.6.1	Separación de los sistemas de puesta a tierra de protección y de servicio	00
4.6.2	Puestas a tierra en CT conectados a redes de cables subterráneos	20
		23
4.7 Cor	rección y ajuste del diseño inicial	24
ANEXO 1	Método de Howe para calcular la resistencia de puesta a tierra y las	
	tensiones de paso y de contacto para distintas geometrías de electrodo de tierra	A 1-1
A1.1	Método de Howe	A 1-2
A1.2	Determinación de la resistencia de puesta a tierra	A 1-2
A1.3	Determinación de las tensiones de paso y contacto	A 1-5
A1.4	Ejemplo. Rectángulo como electrodo de tierra	A 1-6
ANEXO 2	Configuración timo do cloatradas de Aleman	
MIENU Z	Configuración tipo de electrodos de tierra. Tablas con sus parámetros característicos	
	Indice general de tablas	A 2-1
	The second of the second	A 2-2
ANEXO 3	Relación entre resistencia de puesta a tierra y tensiones de paso y de contacto	A 3-1
ANEVO -		
ANEXO 4	Proceso de cálculo y justificación del electrodo de p.a.t.seleccionado	
ANEXO ANEXO		A 4.1-1
ANCAU	4.2 Para CT conectado a red con neutro aislado	A 4.2-1
ANEXO 5	Ejemplos de aplicación	A 5-1
ANEXU 3		

1. OBJETO Y CAMPO DE APLICACION

El presente documento expone un método de cálculo para proyectar instalaciones de puesta a tierra, basadas en electrodos de configuraciones geométricas tipo, para Centros de Transformación (CT) de tercera categoría.

La terminología utilizada es la de! Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación (RAT) y sus Instrucciones Técnicas Complementarias (MIE-RAT).

En este documento, también se establece la correlación calculada entre las tensiones de paso y contacto y la resistencia de puesta a tierra, para cada una de las configuraciones tipo (método de Howe).

El proceso general de diseño para una instalación de puesta a tierra de un CT concreto, alimentado por una red de alta tensión (AT) de parámetros conocidos, a implantar en un terreno de características del terreno concretas, sería el siguiente:

- Proyecto de la instalación de p.a.t. utilizando alguno de los electrodos tipo

- Construcción de la instalación de p.a.t., con la configuración de electrodo elegida en proyecto

 Comprobación práctica, realizando las correspondientes mediciones sobre el terreno, de que los valores reales de las tensiones de paso y contacto y de resistencia de puesta a tierra, coinciden con los valores teóricos calculados.

El proceso anterior se ha realizado repetidamente para distintos electrodos tipo y distintas características del terreno; por tanto, se ha establecido la correlación, sancionada por la práctica, en situaciones análogas, entre tensiones de paso y contacto y resistencia de puesta a tierra. Esta correlación, comprobada de forma práctica, está además corroborada internacionalmente, tal como se indica en la bibliografía del Anexo 6.

Según se indica en el último apartado del punto 8.1 de la MIE-RAT 13, y establecida esta correlación, este documento pretende que el Organismo Territorial Competente admita que, para los CT cuyos electrodos de puesta a tierra respondan a las configuraciones tipo indicadas, se omita la medición de las tensiones de paso y contacto, sustituyéndola por la medición del valor óhmico de la correspondiente resistencia de puesta a tierra.

2.- CONSIDERACIONES SOBRE EL USO DE ELECTRODOS DE TIERRA TIPO

Dado que los CT son instalaciones de caracter repetitivo, parece razonable evitar la realización de un proyecto de instalación de puesta a tierra específico para cada CT, y utilizar como alternativa electrodos tipo.

Los electrodos tipo, de composición y geometría (anchura, longitud, profundidad, etc.) definidas, permiten conocer, a priori, el comportamiento de la instalación de tierra en función de las características de la red de AT que va a alimentar al CT y de las del terreno en donde va a ubicarse este. Así pues, conociendo la tensión de servicio, el tiempo de actuación de las protecciones, la impedancia de puesta a tierra del neutro, etc., en relación con la red de AT que va a alimentar al CT, y la resistividad del terreno en que va a ubicarse el CT, se obtiene la resistencia de puesta a tierra y las tensiones de paso y contacto, mediante métodos de cálculo laboriosos.

Para este documento se ha utilizado el método de Howe y se han desarrollado dos programas distintos de ordenador realizados por equipos independientes, en los que se ha calculado la resistencia de puesta a tierra y las tensiones de paso y contacto para los distintos electrodos tipo. Los dos programas han dado resultados coincidentes.

Para poder presentar de una forma operativa estos resultados, se han confeccionado unas tablas en donde, para cada configuración tipo, se obtienen unos valores "unitarios" de la resistencia de puesta a tierra y de las tensiones de paso y contacto. Estos valores "unitarios" permiten, para cualquier red de AT y cualquier resistividad del terreno, pasar mediante cálculos elementales a los valores, en ohmios, de la resistencia de puesta a tierra y, en voltios, de las tensiones de paso y contacto.

METODO DE CALCULO Y PROYECTO DE INSTALACIONES DE PUESTA A TIERRA PARA CENTROS DE TRANSFORMACION DE TERCERA CATEGORIA

Página 3

Las configuraciones de electrodo consideradas son las siguientes:

* Cuadrados o rectángulos sin picas.

* Cuadrados o rectángulos con 4 y 8 picas.

* Electrodo longitudinal con 2, 3, 4, 6 u 8 picas alineadas.

Además, para cada configuración, se han considerado las profundidades de enterramiento de 0,5 y de 0,8 m. y ,en el caso de picas, se han considerado distintas longitudes de las mismas(2, 4, 6 u 8 m).

Las dimensiones seleccionadas corresponden a los tipos más usuales de locales para CT, considerando la posibilidad de aprovechar la excavación necesaria para la cimentación del local, para instalar un conductor en el fondo de la zanja de cimentación, siguiendo por tanto el perímetro del CT. Este conductor al que, en caso necesario, se conectarán picas, constituye el electrodo. En casos en que sea problemático realizar este tipo de electrodo (subsuelo ocupado) puede recurrirse a la colocación de un electrodo longitudinal con picas exteriores en hilera.

No resulta problemático el caso de que se quiera construir un electrodo cuya geometría no coincida exactamente con la de ninguno de los electrodos tipo de las tablas. Basta con seleccionar el electrodo tipo de medidas inmediatamente inferiores, con la seguridad de que si la resistencia de puesta a tierra y las tensiones de paso y contacto de éste último cumplen las condiciones establecidas en la MIE-RAT 13, con mayor razón las cumplirá el electrodo real a construir, pues al ser de mayores dimensiones, presentará una menor resistencia de puesta a tierra y una mejor disipación de las corrientes de defecto.

Por último, otro aspecto práctico a destacar en relación con los electrodos tipo es que, para unas características determinadas de la red de AT, pueden seleccionarse convenientemente unos cuantos electrodos tipo de los que figuran tabulados, de forma que, además de cumplir las condiciones exigidas a las instalaciones de puesta a tierra, cubran entre todos distintas gamas de valores de resistividad del terreno.

3.- PRESCRIPCIONES GENERALES

Cuando se produce un defecto a tierra en una instalación de alta tensión, se provoca una elevación del potencial del electrodo a través del cual circula la corriente de defecto. Asimismo, al disiparse dicha corriente por tierra, aparecerán en el terreno gradientes de potencial. Al diseñarse los electrodos de puesta a tierra deben tenerse en cuenta los siguientes aspectos:

* Seguridad de las personas en relación con las elevaciones de potencial.

* Sobretensiones peligrosas para las instalaciones.

* Valor de la intensidad de defecto que haga actuar las protecciones, asegurando la eliminación de la falta.

3.1 Seguridad de las personas

La MIE-RAT 13 establece que la tensión máxima aplicable al cuerpo humano, entre mano y pies, que puede aceptarse, es la siguiente:

$$v_{ca} = \frac{\kappa}{t^n}$$
 (1)

Siendo,

 V_{ca} , tensión aplicada, en voltios t, duración de la falta, en segundos K y n, constantes, función del tiempo $0.9 \ge t > 0.1$ segundos, K

 $0.9 \ge t > 0.1 \text{ segundos}, K = 72 y n = 1$ $<math>3 \ge t > 0.9 \text{ segundos}, K = 78.5 y n = 0.18$

 $5 \ge t > 3$ segundos, $V_{ca} = 64 \text{ V}$ t > 5 segundos, $V_{ca} = 50 \text{ V}$

En el Gráfico 1 (pág. 5) se detalla la variación de la tensión máxima aplicable al cuerpo humano entre mano y piés (1) en función del tiempo de despeje de la falta.

Cuando el elemento cuya actuación elimine la falta, disponga de reenganche automático rápido (inferior a 0,5 segundos) el tiempo a considerar (t) será la suma de los tiempos parciales de mantenimiento de la corriente de defecto.

En base a suponer que la tensión máxima aplicada al cuerpo humano, no supere el valor indicado en (1) para las tensiones de contacto (entre mano y piés), ni supere 10 veces dicho valor para las tensiones de paso (entre piés separados 1 m), los valores máximos admisibles de las tensiones de paso y contacto, y que por tanto, no pueden ser superados en una instalación, son los siguientes:

Tensión de paso (V)
$$V_p = \frac{10 \text{ K}}{t^n} \left(1 + \frac{6 \rho_s}{1000}\right)$$
 (2)

Tensión de contacto (V)
$$V_c = \frac{K}{t^n} \left(1 + \frac{1.5 \rho_s}{1000}\right)$$
 (3)

Las fórmulas (2) y (3) responden a un planteamiento simplificado del circuito al despreciar la resistencia de la piel y del calzado, y se han determinado, suponiendo que la resistencia del cuerpo humano es de 1000 Ω y asimilando cada pie a un electrodo en forma de placa de 200 cm² de superficie que ejerza sobre el suelo una fuerza mínima de 250 N, lo que representa una resistencia de contacto con el suelo evaluada en 3 $\rho_{\rm S}$, siendo $\rho_{\rm S}$ la resistividad superficial del terreno.

La deducción de las fórmulas (2) y (3) es la siguiente :

Sea,

. resistencia de contacto con el suelo :

 $R_s = 3 \rho_s$, en Ω

. resistencia del cuerpo humano :

R_H = 1000 Ω

. tensión de paso máxima aplicable al cuerpo humano :

 $V_{pa} = \frac{10 \text{ K}}{t^n}$, en V

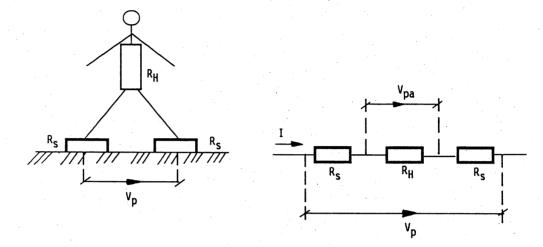
. tensión de contacto máxima aplicable al cuerpo humano:

 $V_{ca} = \frac{K}{t^n}$, en V

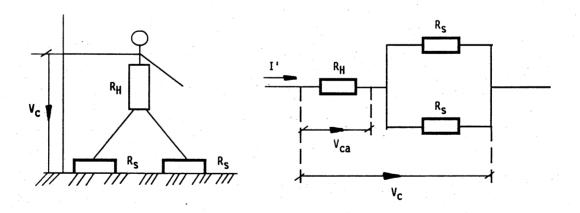

. tensión de paso máxima admisible en la instalación:

V_D, en V

. tensión de contacto máxima admisible en la instalación: ${
m V_{c}}$,en ${
m V}$


GRAFICO 1

Tensión aplicable entre mano y pies en función de la duración del defecto $v_{ca} = \frac{K}{t^n}$


Duración del defecto, t (s)

TENSION DE PASO

$$I = \frac{V_{pa}}{R_{H}} = \frac{V_{p}}{R_{S} + R_{H} + R_{S}} \text{ de donde } V_{p} = V_{pa} \frac{R_{H} + 2R_{S}}{R_{H}} = \frac{10 \text{ K}}{t^{n}} (1 + \frac{6 \rho_{S}}{1000})$$
 (2)

TENSION DE CONTACTO

$$I' = \frac{V_{ca}}{R_{H}} = \frac{V_{c}}{R_{H} + \frac{R_{s}}{2}}, \text{ de donde } V_{c} = V_{ca} = \frac{R_{H} + \frac{R_{s}}{2}}{R_{H}} = \frac{K}{t^{n}} \left(1 + \frac{1.5 \rho_{s}}{1000}\right)$$
(3)

METODO DE CALCULO Y PROYECTO DE INSTALACIONES DE PUESTA A TIERRA PARA CENTROS DE TRANSFORMACION DE TERCERA CATEGORIA

Pagina 7

El proyectista de la instalación de puesta a tierra deberá comprobar, mediante el empleo de un procedimiento de cálculo sancionado por la práctica, que los valores de las tensiones de paso, V'_{D} , y de contacto, V'_{C} , que calcule para la instalación proyectada, en función de su geometría, de la corriente de puesta a tierra que considere y de la resistividad correspondiente del terreno, no superen los valores calculados según las fórmulas (2) y (3).

En el caso de la tensión de paso, puede suceder que la resistividad superficial del terreno sea distinta para cada pie. Esta situación es habitual en el acceso a los centros de transformación, donde los pavimentos, interior y exterior, pueden ser de distinta composición. En estos casos la fórmula de la tensión máxima de paso admisible que puede aparecer en una instalación (2) y que no debe ser superada tiene la expresión :

$$V_{p(acc)} = \frac{10 \text{ K}}{+^{n}} \left(1 + \frac{3 \rho_{s} + 3 \rho'_{s}}{1000}\right)$$
 (4)

En la que ho_s y ho_s son las resistividades superficiales del terreno en el que se apoya cada pie.

En las Tablas 1 y 2 (páginas 8 y 9) se recogen, para resistividades del terreno comprendidas entre 20 y 3000 Ω m, las tensiones máximas de paso y contacto admisibles que pueden aparecer en una instalación, en función del tiempo de eliminación de la falta. En la Tabla 3 (pág. 10) figuran las tensiones máximas de paso admisibles que pueden aparecer en la entrada a los centros de transformación en los que el pavimento, de hormigón, tiene una resistividad de 3000 $\Omega \cdot m$.

3.2 Sobretensiones admisibles para las instalaciones de baja tensión del centro de transformación

Para evitar que la sobretensión que aparece al producirse un defecto en el aislamiento del circuito de alta tensión, deteriore los elementos de baja tensión del centro, el electrodo de puesta a tierra debe tener un efecto limitador, de forma que la tensión de defecto (V_d) sea inferior a la que soportan dichas instalaciones (V_{ht}) .

Esto es:

$$V_{d} = R_{t} \cdot I_{d}$$

$$V_{bt} \ge V_{d}$$
(5)
(6)

Siendo:

 $\rm V_{d}$. Tensión de defecto, en voltios. $\rm V_{bt}$. Tensión soportada a frecuencia industrial por la instalación de baja tensión, en

Resistencia del electrodo, en ohmios.

Id , Intensidad de defecto, en amperios.

Los valores normalmente utilizados de la tensión soportada por la instalación de baja tensión son: 4000, 6000, 8000 y 10000* V

(* Valor recomendado por UNESA)

Estos valores corresponden a las tensiones soportadas, a frecuencia industrial, por los materiales de baja tensión que deben instalarse en los centros de transformación.

Los valores anteriores podrán superarse cuando el proyectista justifique que los materiales tengan características dieléctricas superiores o se disponga, para los elementos más sensibles, de un transformador de separación de circuitos.

TABLA 1

TENSIONES MAXIMAS DE PASO ADMISIBLES QUE PUEDEN AFARECER EN UNA INSTALACION

$$p = \frac{10 \text{ K}}{+n} \left(1 + \frac{6 \rho_s}{1000}\right)$$

Tiempo de actuación de las protecciones (segundos)

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

	95	2	620	680	740	2 8	3 5	2	9	250	400	550	90,	850	8	150	300	450	9	750	06	050	200	350	200	8	200	300	06	8	8	90	8300	00	200
																																	10624 8		
																																	10758 10		
																																	10827 10		
																																	10898 10		
																																			_
																																	11050 1		
																																	_		_
	757		8	919	1000	100	1201	571	1487	1689	1892	2095	2297	2500	2703	2906	3108	3311	3514	3716	3919	4122	4325	4527	4730	5541	6352	7162	7973	8784	9595	10406	11217		
	763	3	2	926	1008	8	120		1498	1703	1907	2112	2316	2520	2725	2929	3133	3338	3542	3746	3951	4155	4359	4564	4768	5585	64 03	7220	8037	8855	9672	0489	1307	2124	2942
																																	11402 1		
I																																	11503	12334	13166
I																											6574					_	11609		
I																																	11723		
l																																	11844		
I																																	11974		
																																	12114		
	828	200	016		90	1182	1404		1020	1847	2069	2290	2512	2734	2955	3177	3399	3620	3842	400	4285	4507	4729	4950	5172	6059	6945	7832	8719	9605	10492	11379	12265	13152	14038
	839	5	976	1018	1188	1198	1423		Ì	1872	2097	2321	2546	2771	2995	3220	344	3669	388	4118	4343	4568	4792	5017	5242	6140	7039	7937	8836	9734	10633	11531	12430	13328	14227
ŀ	851	2	Ř	1033	1124	1215	1443		707	1899	2127	2355	2583	2811	3039	3267	35	3722	3950	4178	4406	4634	4862	2080	5318	6229	7141	8027	3	9876	10787	11699	12610	13522	14433
	3	20	Ĉ.	2 2 2 2 3 3	2 1142	5 123	146			3 1929	3 2161	2382	2624	2825	3087	3318	3550	3781	4013	4244	4476	4707	4939	5170	5402	6328	7253	8179	9105	10031	10957	11883	12809	13735	14661
	6 87	6		<u>8</u>	116	0 1254	1400		77.	1961	2196	2434	2669	2905	3140	3376	3611	3847	4082	4318	4553	4789	5024	2260	5495	6437	7379	8321	9263	10205	11147	12089	13031 13	13973	14915
	8	8	i i	3	2 118	128	0 152				₹ 2 2	248	272	2962	3200	34	368	3850	4160	4	254	4880	5120	2360	200	929	7520	2 2 2 2	3	1000	11360	12320	13280 1:	14240	15200
				_																											_		14940		-
																																	17074		
																																	19920		
																																	23904	25632	2736
																											0 16920			2340	2556	2772	28 28 28		
																											22560	N N	2832						
	4 4032				_	_	-									154	1656	1764	1872	1980 200	2086 2086	2196	300	2412	2520	2952							٠		
•	8	8	6	2	1065	1152	1368	1504		3	_	_			_																				
1	9	9		2 '	2	2	.9	9	, (•	0	0	2	0	0	~ "	_	_	_	_	~	\sim	\sim	_	_	~ 7	_		_	_	_	_	_	_	_

Los valores no indicados corresponden a tensiones superiores a 30000 Voltios.

TABLA 2

FENSIONES MAXIMAS DE CONTACTO ADMISIBLES QUE PUEDEN APARECER EN UNA INSTALACION

$$=\frac{K}{t^n}$$
 $(1+\frac{1.5 \rho_s}{1000})$

Tempo de actuación de las protecciones (segundos)

2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3 a 5 >

1,8 1,9

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

2,9 3 a 5 > 5

8,2

2,7

5,6

5,5

2,4

2,2

2,1

1,8 1,9

1,7

1,6

1,5

1,4

1,2 1,1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

TABLA

TENSIONES MAXIMAS DE PASO ADMISIBLES QUE PUEDEN APARECER EN LA ENTRADA A LOS CENTROS DE TRANSFORMACION :

3 pt + 3p. 10 K p(acc)

l'empo de actuación de las protecciones (segundos)

12216 12288 12360

ê.

Los valores no indicados corresponden a tensiones superiores a 30000 Voltios.

3.3 Limitaciones del valor de la corriente de defecto

La intensidad máxima de defecto I_d deberá ser lo más baja posible, con objeto de que la tensión que aparezca en el electrodo cuando sea recorrido por la misma, tenga el valor más reducido posible.

Dicha intensidad deberá tener asimismo, un valor mínimo superior a la de arranque de las protecciones que tienen que detectar el defecto e interrumpir la alimentación.

I_d > Valor de arranque de las protecciones

(7)

4. PROCEDIMIENTO DE CALCULO

Las prescripciones generales que deben cumplir los electrodos de puesta a tierra, para garantizar la seguridad de las personas y cosas, se resumen, tal como se refleja en el Capítulo 3, en :

Limitación de la resistencia de puesta a tierra (Rt) de protección.

El valor máximo de R_t debe permitir que la intensidad de defecto (I_d) supere el valor mínimo de actuación de las protecciones y que la sobretensión que aparece, en caso de anomalía, $(V_d = R_t \cdot I_d)$ no sea perjudicial para la instalación de baja tensión del CT.

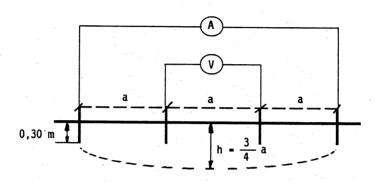
Definición de una configuración geométrica del electrodo de puesta a tierra. Su diseño será tal, que los gradientes de tensión que aparecen en el terreno en caso de defecto, no sean superiores a las tensiones que pueda soportar una persona que acceda simultáneamente, a puntos separados afectados por la anomalía.

Tal como se indica en las fórmulas (2), (3) y (4), las tensiones máximas admisibles en una instalación son función de la resistividad superficial del terreno.

Para cumplir con las condiciones de seguridad requeridas, se seguirá el procedimiento de cálculo indicado en el apartado 2.1 de la MIE RAT 13:

- 1) Investigación de las características del terreno.
- Determinación de las corrientes máximas de puesta a tierra y del tiempo máximo de eliminación del defecto.
- 3) Diseño preliminar de la instalación de tierra.
- 4) Cálculo de la resistencia del sistema de puesta a tierra.
- 5) Cálculo de las tensiones de paso en el exterior de la instalación.
- 6) Cálculo de las tensiones de paso y contacto en el interior de la instalación.
- 7) Comprobación de que las tensiones de paso y contacto calculadas en 5) y 6) sean inferiores a los valores máximos admisibles definidos por las ecuaciones (2), (3) y (4).
- Investigación de las tensiones transferibles al exterior. Separación entre los electrodos de tierra (*) de protección (masas) y de servicio (neutro BT)
- 9) Corrección y ajuste del diseño inicial.
- (*) Se entiende por electrodos de tierra el conjunto formado por los conductores horizontales y picas verticales enterradas.

A continuación se desarrolla cada uno de estos puntos, en los apartados 4.1 a 4.7


4.1 Investigación de las características del terreno

Para instalaciones de tercera categoría y de intensidad de cortocircuito a tierra inferior o igual a 16 kA, el apartado 4.1 de la MIE RAT 13 admite la posibilidad de estimar la resistividad del terreno o de medirla. No obstante, en virtud de lo expuesto en el capítulo 1 del presente documento, se recomienda efectuar la medición.

Medida de la resistividad del terreno

El procedimiento más utilizado y recomendado es el método de Wenner. Se dispondrán cuatro sondas alineadas a intervalos iguales, simétricas respecto al punto en donde se desea medir la resistividad del terreno. La profundidad de estas sondas no es preciso que sobrepase los 30 cm. La separación entre las sondas (a) permite conocer la resistividad media del terreno entre su superficie y una profundidad h, aproximadamente igual a la profundidad máxima a la que se instalará el electrodo.

Siendo:
$$a = \frac{4}{3} h$$
 (8)

$$\rho_{h} = \frac{2 \prod a V}{I}, \quad r = \frac{V}{I}$$

$$\rho_{h} = 2 \prod a r (\Omega \cdot m)$$
(9)

En la Tabla 4 (pág. 13) se recogen los valores del coeficiente $K=2\,\Pi\,a$, que junto con la lectura del aparato (r) determina la resistividad media ρ_h del terreno en la franja comprendida entre la superficie y la profundidad

$$h = \frac{3}{4} \quad a$$

4.2. Determinación de las corrientes máximas de puesta a tierra y del tiempo máximo de eliminación del defecto

Corrientes máximas de puesta a tierra

En instalaciones eléctricas de alta tensión de tercera categoría, los parámetros de la red que definen la corriente de puesta a tierra, como son la resistencia y reactancia de las líneas, son muy variables. Con alguna frecuencia se intercalan nuevos circuitos y subestaciones. Ello obliga a simplificar los cálculos incluyendo, en la aproximación, las consideraciones que hagan posible que las modificaciones posteriores, en forma de nuevas instalaciones y/o modificaciones físicas o eléctricas, mantengan las condiciones de seguridad establecidas, para cada instalación.

El aspecto más importante que debe tenerse presente en el cálculo de la corriente máxima de puesta a tierra es el tratamiento del neutro de la red. Normalmente, en las redes de alta tensión de tercera categoría, las variantes son las siguientes:

Neutro aislado Neutro unido a tierra

- Directamente
- Mediante impedancia

El neutro unido directamente a tierra es una variante de la conexión mediante impedancia, dado que la conexión a tierra siempre presenta una resistencia de cierto valor, por reducido que éste sea.

TABLA 4

CALCULO RESISTIVIDAD MEDIA DEL TERRENO

Distancia entre sondas	Profundidad h	Coeficiente K= 2 Па	Lectura aparato	Resistividad del terreno
(m)	(m)		(ṛ)	(Ω·m)
(a)	(3/4 a)	(A)	(B)	(A*B)
2 4 6 8 10 12	1,5 3,0 4,5 6,0 7,5 9,0	12,57 25,13 37,70 50,27 62,83 75,40		
14 16 18 20	10,5 12,0 13,5 15,0	87,96 100,53 113,10 125,66		
22 24 26 28 30	16,5 18,0 19,5 21,0 22,5	138,23 150,80 163,36 175,93 188,50		
32 34 36 38 40	24,0 25,5 27,0 28,5 30,0	201,06 213,63 226,20 238,76 251,33		
42 44 46 48 50	31,5 33,0 34,5 36,0 37,5	263,89 276,46 289,03 301,59 314,16		

Neutro aislado: corriente máxima a tierra

La intensidad de defecto a tierra es la capacitiva de la red respecto a tierra, directamente proporcional a la longitud de la red, la cual se va ampliando con el transcurso del tiempo. Con objeto de considerar esta circunstancia en el cálculo, no se tendrá presente la reducción prevista, en el apartado 5 de la MIE RAT 13.

Excepto en aquellos casos en los que el proyectista justifique otros valores, para el cálculo de la corriente máxima a tierra en una red con neutro aislado, se aplicara la siguiente expresión:

$$I_{d} = \frac{\sqrt{3} U (\omega C_{a} L_{a} + \omega C_{c} L_{c})}{\sqrt{1 + (\omega C_{a} L_{a} + \omega C_{c} L_{c})^{2} (3 R_{t})^{2}}}$$
(10)

Siendo:

 I_d , Intensidad máxima de defecto a tierra en el centro considerado, en amperios

U. Tensión compuesta de servicio de la red, en voltios Ca, Capacidad homopolar de la línea aérea, en faradios/kilómetro

La, Longitud total de las líneas aéreas de alta tensión subsidiarias de la misma transformación AT/AT, en kilómetros

C_C, Capacidad homopolar de los cables subterráneos, en faradios/kilómetro

 L_{C} . Longitud total de los cables subterrâneos de alta tensión subsidiarios de la misma trans formación AT/AT, en kilómetros

 R_{t} Resistencia de la puesta a tierra de protección del centro, en ohmios. ω . Pulsación de la corriente, de valor 2Π f

Salvo que el proyectista determine otros valores se consid capacidades de la red aérea y subterránea, respectivamente, los siguientes: se considerará. para las

$$C_a = 0.006 \mu F/km$$

 $C_c = 0.25 \mu F/km$

Estos valores corresponden a conductores de las secciones más utilizadas normalmente en instalaciones de tercera categoría y tensiones nominales de la red de 20 kV.

Neutro a tierra : corriente máxima a tierra

La intensidad de defecto a tierra, en el caso de redes con el neutro a tierra, es inversamente proporcional a la impedancia del circuito que debe recorrer. Como caso más desfavorable y para simplificar los cálculos, salvo que el proyectista justifique otros aspectos, sólo se considerará la impedancia de la puesta a tierra del neutro de la red de alta tensión y la resistencia del electrodo de puesta a tierra. Ello supone estimar nula la impedancia homopolar de las líneas o cables, con lo que se consigue independizar los resultados de las posteriores modificaciones de la red. Este criterio no será de aplicación en los casos de neutro unido rigidamente a tierra, en los que se considerará dicha impedancia. Para el cálculo se aplicará, salvo justificación, la siguiente expresión:

$$I_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R_{t})^{2} + X_{n}^{2}}}$$
 (11)

Siendo:

Id. Intensidad máxima de defecto a tierra, en el centro considerado, en amperios.

U, Tensión compuesta de servicio de la red, en voltios.

R_n, Resistencia de la puesta a tierra del neutro de la red, en ohmios

Rt. Resistencia de la puesta a tierra de protección del centro, en ohmios.

X_n. Reactancia de la puesta a tierra del neutro de la red, en ohmios

Los valores de R_n y X_n son característicos de cada red.

Tiempos máximos de eliminación del defecto

Cuando se produce un defecto a tierra, éste se elimina mediante la apertura de un elemento de corte que actúa por la orden que le transmite un dispositivo que controla la intensidad de defecto.

Salvo que el proyectista justifique lo contrario, no se considerarán los cortacircuitos fusibles como elemento de interrupción de las intensidades de defecto a tierra. A efectos de determinar el tiempo máximo de eliminación de la corriente de defecto a tierra, el elemento de corte será un interruptor cuya desconexión estará controlada por un relé que establezca su tiempo de apertura. Los tiempos de apertura del interruptor, incluido el de extinción de arco, se considerarán incluidos en el tiempo de actuación del relé.

Respecto a los tiempos de actuación de los relés, las variantes normales son las siguientes:

Relés a tiempo independiente:

En éstos, el tiempo de actuación no depende del valor de la sobreintensidad. Cuando ésta supera el valor del arranque, actúa en un tiempo prefijado.

Relés a tiempo dependiente:

En éstos, el tiempo de actuación depende inversamente de la sobreintensidad. Algunos de los relés más utilizados responden a la siguiente expresión:

$$t = \frac{K'}{r^{n'}-1}$$
 (12)

Siendo:

t, Tiempo de actuación del relé, en segundos

r. Cociente entre la intensidad de defecto a tierra, (10) u (11), y la intensidad de arranque del relé (I_a) referida al primario.

$$r = \frac{I_d}{I_a} \tag{13}$$

K' y n', parámetros que dependen de la curva característica intensidad-tiempo del relé.

Las curvas más utilizadas son las siguientes :

ı	Normal inversa (n' = 0,02)	Muy inversa (n' = 1)	Extremadamente inversa (n' = 2)						
	0.014	1.35	8						
	0.028	2.70	16						
	0.042	4.05	24						
	0.056	5.40	32						
K١	0.070	6.70	40						
.``	0.084	8.10	48						
	0.098	9.45	56						
	0.112	10.80	64						
	0.126	12.15	72						
-	0.140	13.50	80						

Para definir el tiempo de actuación de las protecciones a tiempo dependiente se indicará la característica del relé, el tipo de curva (n'), la constante K' y la intensidad de arranque (I_a) .

En el caso de que exista reenganche rápido, el tiempo a considerar será la suma de los correspondientes a la primera actuación y a la de la desconexión posterior al reenganche rápido.

4.3. Diseño preliminar de la instalación de tierra

El diseño preliminar de la instalación de puesta a tierra se relizará basándose en alguna de las configuraciones tipo presentadas en el Anexo 2 página A2-2 que esté de acuerdo con la forma y dimensiones del centro de transformación. Sobre esta configuración base pueden tantearse diversas variantes, según el número de picas que se considere, su longitud y la profundidad de enterramiento, tal como se especificaba en el Capítulo 2.

Para cada variante, deberá calcularse la resistencia de puesta a tierra y las correspondientes tensiones de paso y contacto.

4.4. Cálculo de la resistencia de puesta a tierra y de las tensiones de paso y contacto

4.4.1 Consideraciones generales

La resistencia de puesta a tierra es la que existe entre el electrodo y un punto lejano del terreno a potencial cero. Para determinar esta resistencia será preciso conocer la diferencia de potencial entre estos dos puntos (tensión de defecto) y al dividir esta tensión por la intensidad que disipa el electrodo, se obtendrá el correspondiente valor de la resistencia. Para determinar las tensiones de paso y contacto, según las definiciones del RAT, es preciso conocer la distribución de potenciales sobre el terreno en las proximidades del electrodo. Así pués, para determinar la resistencia de puesta a tierra y las tensiones de paso y contacto, debe analizarse la distribución de potenciales que provoca la disipación de corriente a través del electrodo en estudio.

El método de cálculo que se describe, en los capítulos 4.4.2 y 4.4.3 se basa en la descomposición del electrodo en infinitas esferas diferenciales, que disipan una intensidad "dI". Para determinar el potencial en un punto se integrará el aporte de las infinitas esferas diferenciales. Dado que en el medio en que se halla el electrodo existe una discontinuidad debida al plano que delimita la tierra con el aire, para salvar dicha discontinuidad se considerará un medio infinito y homogéneo en el cual se halla el electrodo a estudiar y una imagen del mismo con respecto al plano de tierra (Método de las imágenes).

Como el electrodo de tierra está constituido por un elemento de geometría simple (una pica, un conductor horizontal, etc.), la integración del aporte de las esferas diferenciales mencionadas conduce a la obtención de fórmulas matemáticas simples de fácil aplicación, que permiten determinar directamente la resistencia de puesta a tierra y las tensiones de paso y contacto. Cuando el electrodo de tierra tiene una geometría más compleja debe recurrirse a la utilización de métodos de cálculo más sofisticados como el que se describe en el Anexo 1.

4.4.2 Electrodos de tierra. Parámetros característicos

Tal como se ha expuesto en el Capítulo 2, la aplicación práctica de las fórmulas usadas en el método de Howe (Anexo 1) requiere el empleo de programas de ordenador. Para facilitar la presentación de resultados se han confeccionado una serie de tablas (Anexo 2) en las que, para diferentes geometrías de electrodo (Capítulo 2) se especifican los siguientes parámetros, expresados en los valores "unitarios" indicados.

Resistencia de puesta a tierra Kr. $\Omega/(\Omega \cdot m)$ Tensión de paso máxima, Kp. $V/(\Omega \cdot m) \cdot (A)$ Tensión de contacto exterior máxima, Kc. $V/(\Omega \cdot m) \cdot (A)$

Multiplicando K_{r} por ρ (resistividad del terreno) se obtiene la resistencia de puesta a tierra en Ω . Seguidamente, se calcula la I_{d} , según las fórmulas (10) u (11) del apartado 4.2, y, por último, multiplicando K_{p} y K_{c} por ρ y por I_{d} se obtienen, respectivamente, los valores, en voltios, de la tensión de paso máxima y de la tensión de contacto exterior máxima, para cada configuración tipo de electrodo.

$$K_r \cdot \rho = R_t (\Omega);$$
 $K_p \cdot \rho \cdot I_d = V_p (V);$ $K_c \cdot \rho \cdot I_d = V_c (V)$

Cuando exista una malla equipotencial conectada al electrodo de tierra, la tensión de paso de acceso (Capítulo 3) es equivalente al valor de la tensión de contacto exterior máxima.

En el Anexo 2, para el caso de electrodos longitudinales con picas exteriores, no se indica el valor de tensión de contacto exterior, ya que depende de la posición en que se ubique el electrodo con respecto al CT. En general, si las picas se colocan frente a los accesos al CT, paralelas a la fachada, no debe considerarse la tensión de paso de acceso (tensión de contacto exterior).

Por el contrario, si las picas se ubican lejos de los accesos al CT, deberá considerarse como tensión de paso de acceso (tensión de contacto exterior), la tensión de defecto.

La conexión desde el CT hasta la primera pica se realizará con cable de cobre aislado de 0.6/1~kV y se recomienda protegerlo con tubo de PVC de grado de protección 7 como mínimo, contra daños mecánicos.

4.4.3 Relación entre las tensiones de paso y contacto y la resistencia de puesta a tierra

La relación entre las tensiones de paso y contacto y la resistencia de puesta a tierra está desarrollada en el Anexo 3. En él se pone de manifiesto que para una red concreta, tanto V'_p como V'_c son funciones únicamente de la variable R_t .

De esta forma queda establecida la correlación calculada existente de $\rm V'_p$ y $\rm V'_c$ con $\rm R_t$, respectivamente, que se indicaba en el Capítulo 1.

4.5. Comprobación de que las tensiones de paso y contacto calculadas (puntos 5 y 6 del Capítulo 4) sean inferiores a los valores máximos admisibles definidos en (2), (3) y (4).

En el Capítulo 3 se recogen los criterios que definen las tensiones de paso y contacto admisibles. En las tablas 1, 2 y 3 se detallan los valores para resistividades del terreno comprendidas entre 20 y 3000 Ω · m y distintos tiempos de duración de la falta.

En cualquier caso el proyectista podrá calcular otros valores concretos mediante las expresiones matemáticas (2), (3) y, si procede, (4).

A título de ejemplo, en las mencionadas tablas puede apreciarse, para tiempos de respuesta de las protecciones de 0,5 segundos y terrenos de resistividad media de 300 ohmios metro, las siguientes tensiones admisibles:

Tensión de paso admisible en la instalación	4032 V (Tabla 1)
Tensión de contacto admisible en la instalación	209 V (Tabla 2)
Tensión de paso admisible a la entrada al centro con pavimento	15696 V (Tabla 3)

Puede apreciarse que ambas tensiones de paso admisibles tienen valores que no se superan si se utilizan electrodos con diseños y estructuras normales. Incide más el condicionante de que la tensión de defecto no afecte a las instalaciones de baja tensión del centro de transformación, que el de no sobrepasar tensiones de paso admisibles.

Por el contrario, en lo que se refiere a las tensiones de contacto, el valor de la tensión admisible es reducido. Controlar que la tensión que se puede presentar en caso de defecto no supere este valor, podrá representar en muchas situaciones, tener que establecer unos electrodos muy dimensionados, cuya configuración no sería viable físicamente y cuyo coste sería difícilmente asumible. En estos casos el RAT permite la posibilidad de recurrir al empleo de medidas adicionales de seguridad a fin de reducir los riesgos para las personas y cosas.

En este documento se da por supuesto de que se recurrirá a la utilización de alguna de las medidas que se indican en el apartado 4.5.1, por lo que no será preciso calcular el valor de las tensiones de paso y contacto interiores y de contacto exterior, ya que estos valores serán prácticamente cero. En caso contrario, el proyectista deberá justificar la utilización de otras medidas equivalentes, o bien, calcular los valores de tensiones mencionados y verificar que los mismos están por debajo de los admisibles por la MIE-RAT 13.

4.5.1 Medidas adicionales de seguridad para las tensiones de contacto

Entre las medidas aceptadas, independientemente de otras que el proyectista justifique, se podrá:

- * Disponer suelos o pavimentos que aislen suficientemente de tierra las zonas peligrosas
- * Establecer conexiones equipotenciales entre la zona de acceso para el personal de servicio y todos los elementos conductores accesibles desde la misma.

Las medidas concretas consideradas en el presente documento son las siguientes:

Centros de transformación en edificio

Las puertas y rejillas metálicas que den al exterior del centro no tendrán contacto eléctrico con masas conductoras susceptibles de quedar sometidas a tensión debido a defectos o averías.

En el piso, se instalará un mallazo electrosoldado con redondos de diámetro no inferior a 4 mm formando una retícula no superior a 0.30×0.30 m. Este mallazo se conectará como mínimo en dos puntos preferentemente opuestos a la puesta a tierra de protección del Centro. Con esta disposición se consigue que la persona que deba acceder a una parte que pueda quedar en tensión, de forma eventual, esté sobre una superficie equipotencial, con lo que desaparece el riesgo inherente a la tensión de contacto y de paso interior. Este mallazo se cubrirá con una capa de hormigón de 10 cm de espesor como mínimo (figura 2).

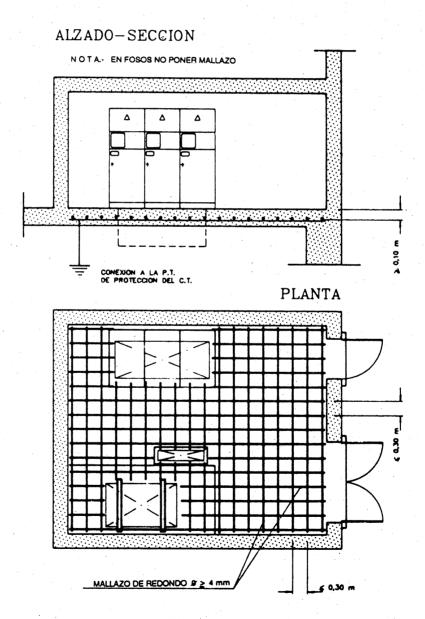


Figura 2

MEDIDAS ADICIONALES DE SEGURIDAD PARA LAS TENSIONES DE CONTACTO EN CENTROS DE TRANSFORMACION DE EDIFICIO

Centros de transformación sobre apoyos

Para controlar la tensión de contacto se colocará una losa de hormigón de espesor no inferior a 20 cm que cubra, como mínimo, hasta 1,20 m de las aristas exteriores de la cimentación de los apoyos. Dentro de la losa y hasta 1 m de las aristas exteriores de la cimentación del apoyo, se dispondrá un mallazo electrosoldado de construcción con redondos de diámetro no inferior a 4 mm formando una retícula no superior a 0,30 x 0,30 m Este mallazo se conectará a la puesta a tierra de protección del centro al menos en 2 puntos preferentemente opuestos, y quedará recubierto por un espesor de hormigón no inferior a 10 cm (figura 3)

Con esta medida adicional se consigue que la persona que deba acceder a una parte que, de forma eventual, pueda ponerse en tensión, esté situada sobre una superficie equipotencial, con lo que desaparece el riesgo inherente a la tensión de contacto y de paso interior.

El proyectista podrá justificar otras medidas equivalentes.

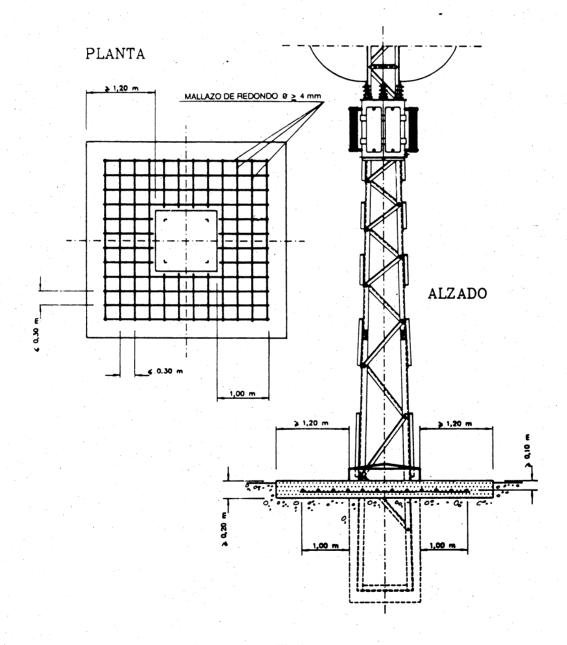


Figura 3

MEDIDAS ADICIONALES DE SEGURIDAD PARA LAS TENSIONES DE CONTACTO EN CENTROS DE TRANSFORMACION SOBRE APOYOS

4.5.2. Condiciones a cumplir por el electrodo de tierra

Además de conseguir que los valores de las tensiones de paso y contacto admisibles no sean superados, existen otros aspectos que deben tenerse en cuenta al diseñar los electrodos de puesta a tierra, para evitar que las sobretensiones que se puedan presentar en el caso de defecto o avería, superen los límites considerados, tal como se detalla en los apartados 3.2 y 3.3. En la Tabla 5 se resumen dichas condiciones.

TABLA 5

CONDICIONES A CUMPLIR POR LOS ELECTRODOS

Seguridad de las personas (Apartado 3.1)

		(, , , , , , , , , , , , , , , , , , ,
Tensión máxima calculada	≤ ,	Tensión máxima admisible en la instalación
de paso en el exterior	≤	de paso (V_p) (2) δ (4)
de paso en el interior	≤	de paso (V _p) (2) 6 (4)
de contacto en el interior	≤	de contacto (V _C) (3)

Si no se cumple alguna de estas condiciones, el proyectista deberá justificar las medidas adicionales de seguridad adoptadas para no superar las tensiones admisibles, de acuerdo con lo indicado en el apartado 4.5.

Protección del material (Apartado 3.2)

Nivel de aislamiento del equipo de BT del CT $\,$ a frecuencia industrial $\,$ $\,$ \geq $\,$ Tensión de defecto

 V_{bt} $\geq R_t \cdot I_d$ (6)

Se deberá definir el valor de $V_{\rm bt}$, y si no se cumple la relación (6), deberá utilizarse un transformador de separación de circuitos.

Limitación de la corriente de defecto (Apartado 3.3)

Intensidad de defecto > Intensidad de arranque de las protecciones

(7)

4.6. Investigación de las tensiones transferidas al exterior

Una vez diseñado el electrodo, deberá verificarse que no puedan transmitirse tensiones al exterior. En concreto deberá estudiarse la posible transferencia a través de la puesta a tierra del neutro y determinar las características eléctricas de este último.

4.6.1. Separación de los sistemas de puesta a tierra de protección (masas) y de servicio (neutro)

Para garantizar que el sistema de puesta a tierra de servicio no alcance tensiones elevadas que puedan afectar a las instalaciones de los usuarios, en el momento en que se esté disipando un defecto por el sistema de tierra de protección, debe establecerse una separación entre los electrodos más próximos de ambos sistemas, la cual, será función de la resistividad del terreno y de la intensidad de defecto.

La máxima diferencia de potencial que puede aparecer entre el neutro de BT y una tierra lejana no afectada, no debe ser superior a $1000 \ \text{V}$.

Este valor se establece al tener presente lo indicado en la MI- BT 017 del Reglamento Electrotécnico para Baja Tensión, que fija como tensión de ensayo para las instalaciones interiores, durante 1 minuto, 2 U + 1000 V, siendo U la tensión máxima de servicio, con un mínimo de 1500 V. Este mismo valor de 1500 V aparece en la MI BT 031 como tensión de ensayo a 50 Hz a mantener durante 1 minuto, en los receptores. Al tratarse de una instalación de BT que está en servicio y de acuerdo con el criterio que se suele aplicar en estos casos (tensión de ensayo no superior al 80% del valor máximo).

$$U = 0.8 \cdot 1500 = 1200 \text{ V}$$

El valor de 1000 V adoptado incluye, pues, un margen de garantía suficiente.

Al producirse un defecto a tierra y disiparse una corriente por el sistema de tierras de protección, la tensión inducida sobre el électrodo de puesta a tierra del neutro de BT no deberá superar, pues, los 1000 V

Para determinar la tensión inducida sobre el electrodo de puesta a tierra de BT, el comportamiento del electrodo de tierra de protección puede asimilarse al de una semiesfera.

La tensión inducida por una semiesfera a una distancia D, viene determinada por :

$$u_i = \frac{\rho \cdot I_d}{2 \pi D}$$

Siendo D: distancia entre electrodos de protección y de servicio, en metros.

Despejando D:

$$D = \frac{\rho \cdot I_d}{2 \Pi U_i}$$

e imponiendo la condición de que $U_{i} \leq 1000$ V. resulta :

$$0 \ge \frac{\rho \cdot I_d}{2000 \, \Pi}$$

En la tabla 6 (pág. 22) se recogen las distancias mínimas entre electrodos para intensidades de defecto comprendidas entre 20 y 1000 A y resistividades de terreno entre 20 y 3000 $\Omega \cdot m$

Para mantener los sistemas de puesta a tierra de protección y de servicio independientes, la puesta a tierra del neutro se realizará con cable aislado de 0,6/1 kV, protegido con tubo de PVC de grado de protección 7, como mínimo, contra daños mecánicos.

TABLA 6

SEPARACION DE LOS SISTEMAS DE PUESTA A TIERRA, METROS

Intensidad de defecto (amperios)

Resistividad terreno

Ω • m 20 40 60 80 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

n 2 . . 1 -5 14. . 47 2 2 95 100 106 95 101 107 113 95 102 108 115 121 88 95 101 108 115 122 129 54 61 93 100 107 115 122 129 136 98 106 113 121 129 136 144 95 103 111 119 127 135 143 151 76 86 95 105 115 124 134 143 153 162 172 181 89 100 111 123 134 145 156 167 178 189 201 212 89 102 115 127 140 153 166 178 191 204 216 229 242 86 100 115 129 143 158 172 186 201 215 229 244 258 272 95 111 127 143 159 175 191 207 223 239 255 271 286 302 88 105 123 140 158 175 193 210 228 245 263 280 298 315 333 95 115 134 153 172 191 210 229 248 267 286 306 325 344 363 83 103 124 145 166 186 207 228 248 269 290 310 331 352 372 393 89 111 134 156 178 201 223 245 267 290 312 334 357 379 401 423 72 95 119 143 167 191 215 239 263 286 310 334 358 382 406 430 454

Sistema único para las puestas a tierra de protección y de servicio

Cuando V_d = $R_t \cdot I_d \le 1000$ V, se podrá disponer una puesta a tierra única para los sistemas de protección y de servicio.

En la tabla 7 se recogen, en función de las intensidades de defecto, los valores de la resistencia que permiten la interconexión de los dos sistemas a una tierra única.

TABLA 7

RESISTENCIA MAXIMA DEL ELECTRODO, PARA PUESTA A TIERRA UNICA

I _d (A)		R_{t} (Ω)
50		20
100		10
150		6.5
200		5
300		3
500	1	2
1000		1

Resistencia de la puesta a tierra de servicio

Una vez conectada la red de puesta a tierra de servicio al neutro de la red de BT, el valor de esta resistencia de puesta a tierra general deberá ser inferior a 37 ohmios.

Con este criterio se consigue que un defecto a tierra en una instalación interior, protegida contra contactos indirectos por un interruptor diferencial de sensibilidad 650 mA, no ocasione en el electrodo de puesta a tierra de servicio una tensión superior a:

$$37 \times 0.650 = 24 \text{ V}$$

4.6.2. Puestas a tierra en centros de transformación conectados a redes de cables subterráneos

El RAT admite el empleo de un electrodo único, en los centros de transformación conectados a una red general si se cumple una de estas dos condiciones:

- a) Que la alimentación en alta tensión forme parte de una red de cables subterráneos con envolventes conductoras, de suficiente conductibilidad.
- b) Que la alimentación en alta tensión forme parte de una red mixta de líneas aéreas y cables subterrâneos con envolventes conductoras, y existan en ella dos o más tramos de cable subterrâneo con una longitud total mínima de 3 km con trazados diferentes y una longitud de cada uno de ellos de más de 1 km.

Salvo que el proyectista establezca otra justificación, se considerará, que la red tiene suficiente conductibilidad, cuando se cumpla:

$$R'_m \times I_d \leq 1000 \text{ V}$$

Siendo:

R'm,La resistencia, en ohmios, de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas verticales conectadas a dicha malla, ampliada con los cables de cubierta aislante

METODO DE CALCULO Y PROYECTO DE INSTALACIONES DE PUESTA À TIERRA PARA CENTROS DE TRANSFORMACION DE TERCERA CATEGORIA

Página 24

$$R'_{m} = \frac{\rho}{4r} + \frac{\rho}{L+L'}$$

en donde:

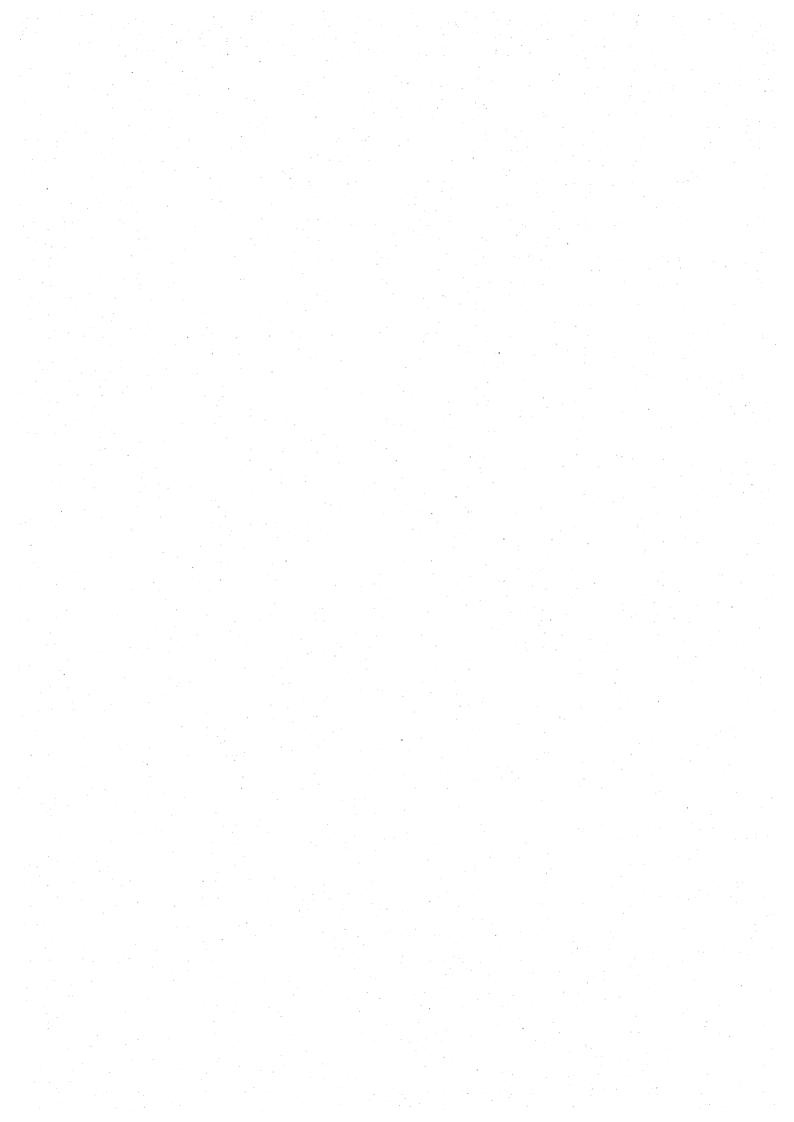
, Resistividad del terreno, en ohmios por metro

, Radio de un círculo de la misma superficie que el área cubierta por la malla, en metros.

, Longitud total de los cables existentes en la malla con cubierta conductora, en metros.

, Longitud total de las picas verticales incluidas en la malla, en metros.

1000 V, Tensión que deben soportar las instalaciones interiores y receptoras, tal como se ha indicado anteriormente.

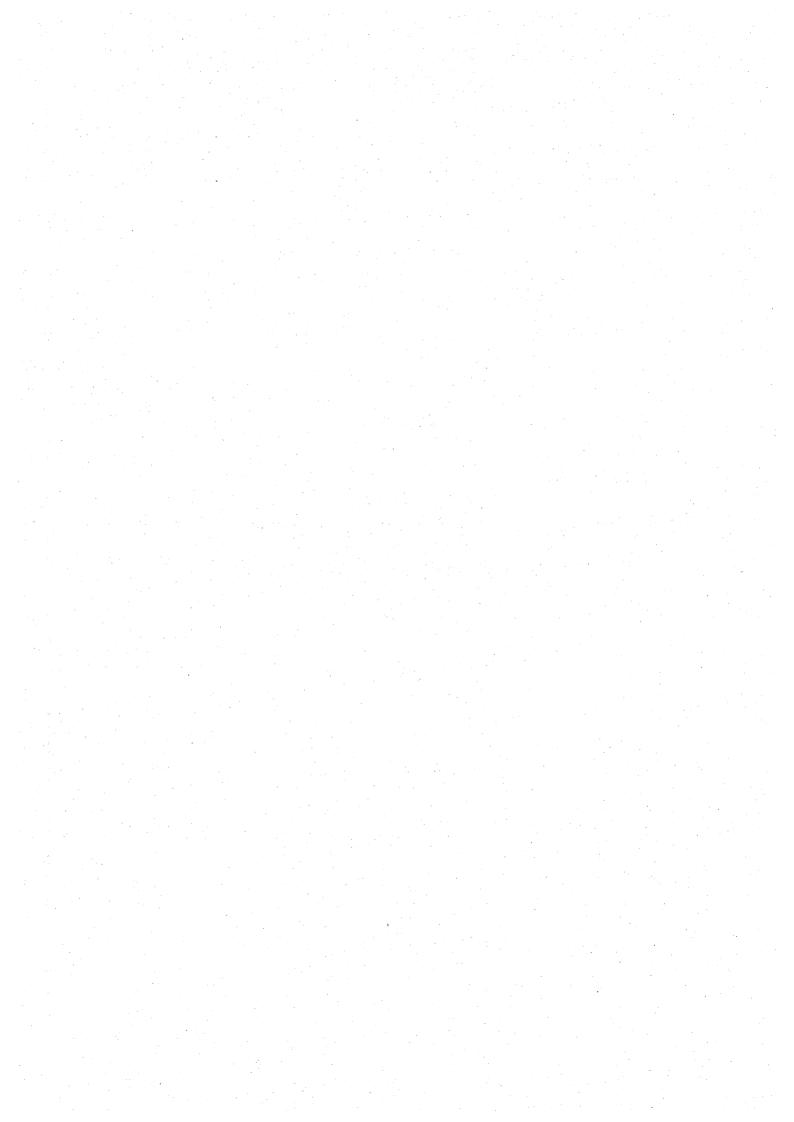

4.7. Corrección y ajuste del diseño inicial.

En el caso de que el diseño inicial incumpla alguno de los condicionantes anteriormente

indicados, deberá escogerse otra variante de electrodo tipo y repetir el proceso.

Aumentando la longitud total de electrodo horizontal, el número de picas o su longitud, disminuirá la R_t , y en consecuencia los valores de V'_p y V'_c . También pueden aplicarse otras medidas, indicadas en 4.5.1, tales como disponer pavimentos suficientemente aislantes o establecer conexiones equipotenciales.

En el Anexo 4 se expone resumidamente el proceso de justificación del electrodo de puesta a tierra seleccionado para CT conectados a redes de AT de tercera categoría con el neutro puesto a tierra(Anexo 4.1), o con el neutro aislado(Anexo 4.2).



METODO DE HOWE PARA CALCULAR LA RESISTENCIA DE PUESTA A T	IERRA
Y LAS TENSIONES DE PASO Y DE CONTACTO PARA DISTINTAS	
GEOMETRIAS DE ELECTRODO DE TIERRA	

ANEXO1

ANEXO 1

METODO DE HOWE PARA CALCULAR LA RESISTENCIA DE PUESTA A TIERRA Y LAS TENSIONES DE PASO Y DE CONTACTO PARA DISTINTAS GEOMETRIAS DE ELECTRODO DE TIERRA

A1.1 METODO DE HOWE

El método de Howe analiza el comportamiento de un electrodo que disipa una intensidad en un medio infinito y homogéneo, suponiendo que la corriente de disipación lineal es constante en todo el electrodo, e igual a la corriente total disipada dividida por la longitud total de conductor.

Para facilitar el estudio de diversos tipos de electrodos y posibilitar la obtención de expresiones matemáticas sencillas, se dividirá el electrodo en conductores lineales paralelos a alguno de los ejes de un sistema de coordenadas ficticio.

A1.2 DETERMINACION DE LA RESISTENCIA DE PUESTA A TIERRA

Para determinar la resistencia del electrodo se dividirá éste en "n" elementos según las consideraciones anteriores, calculándose el potencial del electrodo como media de los potenciales de todos sus elementos. Dividiéndose éste por la intensidad total disipada, se obtendrá el valor de la resistencia de puesta a tierra.

El potencial "V_i" de un elemento cualquiera del electrodo se calculará como media de los potenciales inducidos por el resto de elementos sobre éste y del potencial que aparecería en él mismo considerándolo como elemento aislado. El potencial " V_1 " se calculará por la siguiente expresión :

$$V_{i} = \sum_{j=i}^{j=2n} V_{ij}$$

Siendo:

 V_i , Potencial medio del elemento "i". V_{ii} , Potencial medio que adquiriría el elemento "i" considerado aisladamente en un medio infinito y homogéneo

 V_{ij} , Potencial medio que induce el elemento "j" sobre el elemento "i".

, Número de elementos en que se ha dividido el electrodo (2n considerando los conductores imágen).

Con lo cual, el potencial medio " $\mathbf{U_0}$ " del electrodo se determinará por la expresión :

$$\mathbf{v_0} = \frac{\sum_{i=1}^{i-n} \quad \sum_{j=1}^{j-2n} \quad \mathbf{v_{ij}}}{n}$$

Ca 1 cu lándose la resistencia de tierra dividiendo el potencial medio del electrodo por la intensidad total disipada.

Cualquier V_{ij} puede expresarse en la forma siguiente :

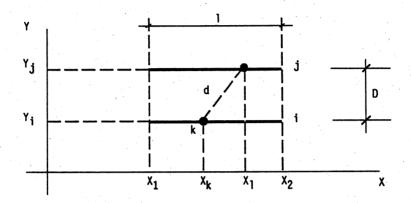
$$V_{ij} = \rho \cdot i \cdot A_{ij} \cdot l_j$$

Siendo:

Resistividad del terreno.

i , Intensidad disipada por el electrodo por unidad de longitud. lj , Longitud del elemento "j" .

Aij . Coeficiente de influencia entre los elementos "i" y "j" , que sólo es función de la geometría del electrodo.


Con lo que la resistencia se calculará por la formula siguiente :

$$R = \rho \frac{\sum_{i=1}^{i=n} \sum_{j=1}^{j=2n} A_{i,j} l_{j}}{n \sum_{i=1}^{i=n} l_{i}}$$

DETERMINACION DE LOS COEFICIENTES Aii :

Se plantea a continuación un caso sencillo en el que se detalla el proceso matemático para la determinación de V_{ij} y A_{ij} .

Sean dos conductores paralelos y de igual longitud, según el esquema siguiente :

Si se supone que el conductor "j" esta compuesto por infinitas esferas diferenciales que disipan una corriente "idx" , la tensión inducida " $\mathbb{U}_{k,j}$ " en el punto "k" del conductor "i" , por todo el conductor "j" , se obtendrá de la siguiente expresión :

$$U_{k,j} = \int_{X_1 = X_1}^{X_1 = X_2} \frac{\rho_{i,j}}{4 \pi d} dX_1$$

El potencial medio " V_{ij} " inducido por el conductor "j" sobre el conductor "i" , vendrá dado por la expresión :

$$v_{ij} = \frac{1}{1} \int_{-X_k - X_1}^{-X_k - X_2} u_{kj} dx_k$$

Resolviendo las integrales se obtiene :

Siendo:

P , Resistividad del terreno.

i , Intensidad disipada por unidad de longitud.

l; , Longitud del conductor "j" .

 $\mathbf{I}_{\mathbf{j}}$, Intensidad disipada por el conductor "j" .

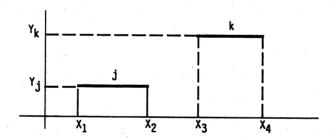
$$A_{i,j} = \frac{1}{2\Pi \cdot 1} \left[\text{sen h}^{-1} \left(\frac{1}{D} \right) - \sqrt{1 + \frac{D^2}{1^2}} + \frac{D}{1} \right]$$

Si se cumple el requisito de que los elementos lineales en que se ha dividido el electrodo son paralelos a alguno de los ejes de un sistema de coordenadas ficticio, pueden plantearse tres ecuaciones genéricas para la determinación de los correspondientes A_{ij} .

a) Coeficiente de auto-influencia (A;;).

$$A_{ii} = \frac{1}{2 \prod l_i} \ln \left(\frac{2 l_i}{d_i} \right)$$

Siendo:


l; , Longitud del elemento.

d_i , Diámetro del elemento.

b) Coeficiente de influencia entre conductores paralelos.

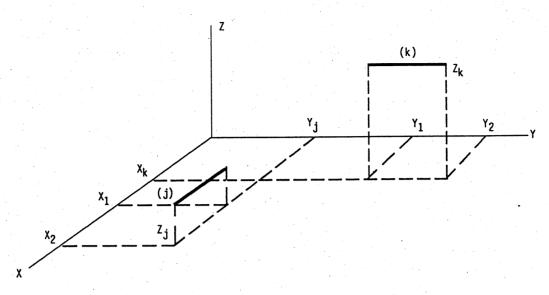
$$A_{jk} = \frac{1}{4\Pi l_j l_k} \left[F(X_4, X_1) + F(X_3, X_2) - F(X_3, X_1) - F(X_4, X_2) \right]$$

$$F(A, B) = (A - B) \operatorname{sen} h^{-1} \left(\frac{A - B}{Y_k - Y_j} \right) - \sqrt{(Y_k - Y_j)^2 + (A - B)^2}$$

c) Coeficiente de influencia entre conductores perpendiculares.

$$A_{jk} = \frac{1}{4 \prod l_j l_k} \left[F(X_1, Y_1) + F(X_2, Y_2) - F(X_1, Y_2) - F(X_2, Y_1) \right]$$

$$F(A, B) = (B - Y_j) ln \left| M(A, B) \right| + (A - X_k) ln \left| M(A, B) \right| + 2 (Z_k - Z_j) tg^{-1} (0(A, B))$$

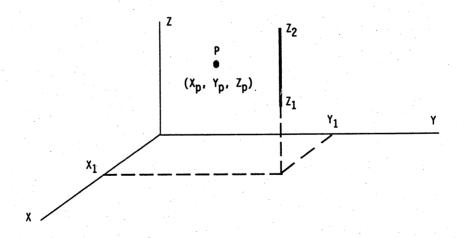

$$M(A, B) = M_1 + \sqrt{(M_1)^2 + 1}$$

$$M_1 = \frac{A - X_k}{\sqrt{(B - Y_j)^2 + (Z_k - Z_j)^2}}$$

$$N(A, B) = N_1 + \sqrt{(N_1)^2 + 1}$$

$$N_1 = \frac{B - Y_j}{\sqrt{(A - X_k)^2 + (Z_k - Z_j)^2}}$$

$$0(A , B) = \frac{1}{Z_k - Z_j} \left[B - Y_j + A - X_k + \sqrt{(A - X_k)^2 + (B - Y_k)^2 + (Z_k - Z_j)^2} \right]$$


A1.3 DETERMINACION DE LAS TENSIONES DE PASO Y CONTACTO

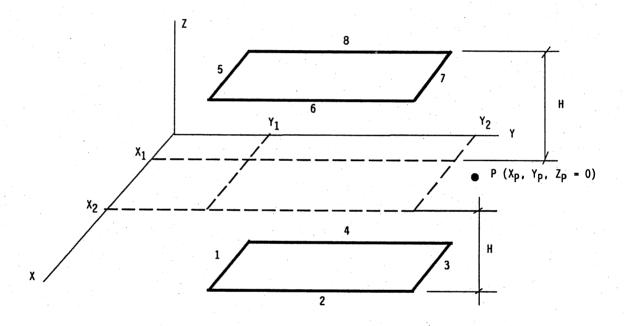
Una vez determinada la resistencia de puesta a tierra del electrodo, podrá calcularse la intensidad de defecto a tierra y por consiguiente la intensidad de disipación lineal, "i". Ello permitirá, mediante las expresiones que se detallan a continuación, calcular el potencial absoluto en un punto cualquiera de la superficie del terreno, como suma de los potenciales creados por cada elemento del electrodo.

El conocimiento del potencial absoluto en un punto cualquiera, permite determinar la tensión de contacto en ese punto como diferencia entre el potencial de éste y el del electrodo (tensión de defecto).

La tensión de paso se calculará como diferencia de potencial entre dos puntos separados 1 m.

Para determinar el potencial absoluto creado por un elemento lineal, como ya se ha dicho anteriormente, se divide el elemento en infinitas esferas diferenciales y se integra el potencial creado por cada una de ellas.

El potencial creado por el elemento "i" en el punto P se determinará por la expresión siguiente:


$$Vp = \frac{\rho \cdot i}{4 \Pi} \int_{Z=Z_1}^{Z=Z_2} \frac{dZ}{\sqrt{(x_p - x_1)^2 + (y_p - y_1)^2 + (z_p - z_1)^2}}$$

Resolviendo la integral se obtiene :

$$Vp = \frac{\rho \cdot i}{4 \Pi} \left[\frac{z_2 - z_p}{\sqrt{(x_p - x_1)^2 + (Y_p - Y_1)^2}} \right] - sen h^{-1} \left[\frac{z_1 - z_p}{\sqrt{(x_p - x_1)^2 + (Y_p - Y_1)^2}} \right]$$

A1.4 EJEMPLO. RECTANGULO COMO ELECTRODO DE TIERRA

A continuación se detallan las fórmulas simplificadas que pueden aplicarse en el caso de que el electrodo sea un rectángulo

Se divide el electrodo en 4 elementos, tomando Z=0 como plano de tierra. Para este caso se cumple que :

$$l_x = l_1 = l_3 = l_5 = l_7$$

 $l_y = l_2 = l_4 = l_6 = l_8$

La Resistencia del electrodo se calculará por la fórmula:

$$R = \rho \frac{\sum_{i=1}^{i=n} \sum_{j=1}^{j=2n} A_{i,j} l_{j}}{n \sum_{i=1}^{i=n} l_{i}}$$

Tomando como ejemplo el elemento "1", los " $A_{i,j}$ " posibles se determinarán con las siguientes fórmulas simplificadas :

$$A_{11} = \frac{1}{2 \Pi l_1} \ln \left(\frac{2 l_1}{d_1} \right)$$

Al hacer $X_1 = X_3$, $X_2 = X_4$, $I_j = I_x$, en la fórmula genérica (b), se obtiene :

$$\begin{bmatrix} A_{1,j} = \frac{1}{2\Pi l_{x}} & sen h^{-1} & (\frac{l_{x}}{D}) - \sqrt{1 + \frac{D^{2}}{l_{x}^{2}}} + \frac{D}{l_{x}} \end{bmatrix}$$

Siendo:

D =
$$1_y$$
 en A_{13}
D = $2H$ en A_{15}
D = $\sqrt{(2H)^2 + 1_y^2}$ en A_{17}

Tomando $X_1 = X_k$, $Y_1 = Y_j$, $Z_j = Z_k$, en la fórmula genérica (c), se obtiene :

$$A_{12} = A_{14} = \frac{1}{4\pi l_x l_y} \left[l_x \text{ sen } h^{-1} \left(\frac{l_y}{l_x} \right) + l_y \text{ sen } h^{-1} \left(\frac{l_x}{l_y} \right) \right]$$

Por último, tomando $X_1 = X_k$, $Y_1 = Y_k$, en la fórmula genérica (c), se obtiene :

$$A_{16} = A_{18} = \frac{1}{4 \pi l_x l_y} \left[l_x \operatorname{sen} h^{-1} \frac{l_y}{\sqrt{l_x^2 + (2H)^2}} + l_y \operatorname{sen} h^{-1} \frac{l_x}{\sqrt{l_y^2 + (2H)^2}} - 2H \operatorname{tg}^{-1} \frac{l_x \cdot l_y}{2H \sqrt{l_x^2 + l_y^2 + 4H^2}} \right]$$

Aplicando las fórmulas anteriormente descritas, el potencial en el punto $\,P\,$ se calculará en forma siguiente :

$$V_p = \sum_{i=1}^{i=8} V_{p_i}$$

Siendo:

$$V_{p3} = V_{p7} = \frac{\rho i}{4 \pi} \left[\text{sen h}^{-1} \frac{X_2 - X_p}{\sqrt{(Y_p - Y_2)^2 + H^2}} - \text{sen h}^{-1} \frac{X_1 - X_p}{\sqrt{(Y_p - Y_2)^2 + H^2}} \right]$$

$$V_{p8} = V_{p4} = \frac{\rho i}{4 \pi} \left[\text{sen h}^{-1} \frac{Y_2 - Y_p}{\sqrt{(X_p - X_1)^2 + H^2}} - \text{sen h}^{-1} \frac{Y_1 - Y_p}{\sqrt{(X_p - X_1)^2 + H^2}} \right]$$

$$V_{p1} = V_{p5} = \frac{\rho i}{4 \pi} \left[\text{sen } h^{-1} \frac{X_2 - X_p}{\sqrt{(Y_p - Y_1)^2 + H^2}} - \text{sen } h^{-1} \frac{X_1 - X_p}{\sqrt{(Y_p - Y_1)^2 + H^2}} \right]$$

$$V_{p2} = V_{p6} = \frac{\rho i}{4 \pi} \left[\text{sen } h^{-1} \frac{Y_2 - Y_p}{\sqrt{(X_p - X_2)^2 + H^2}} - \text{sen } h^{-1} \frac{-Y_1 - Y_p}{\sqrt{(X_p - X_2)^2 + H^2}} \right]$$

ANEXO 2

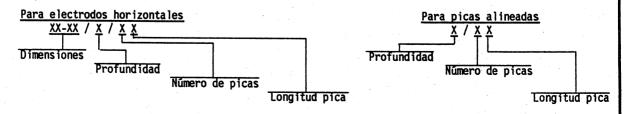
ANEXO 2

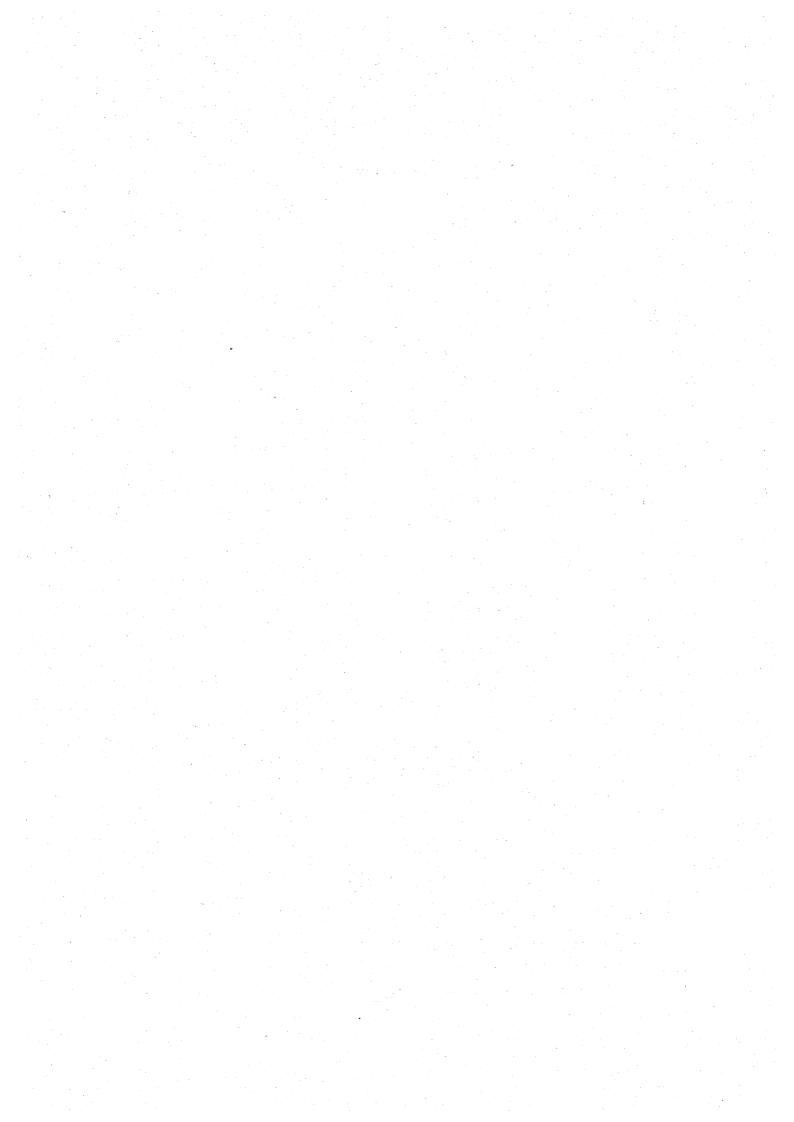
CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

A 2 - 1

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

TABLAS DE CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA CON SUS RESPECTIVOS PARAMETROS CARACTERISTICOS


INDICE GENERAL


Figura		Lado	s e	en m	1		Иδ	pági	na
Cuadrado	de	2'0	х	2'0				A2-3	
Rectangulo	de	2'0	X	215				A2-4	
Rectangulo	de	2'0	X	3'0				A2-5	
Cuadrado	de	2'5	x	2'5				A2-6	
Rectángulo	de			2'5				A2-7	
Cuadrado	de			3'0				A2-8	
Rectángulo	de	3'0	X	3'5				A2-9	
Rectangulo	de			2'5				A2-10	
Rectángulo	de	4'0	X	3'0				A2-11	
Rectángulo	de	4'0	X	3'5				A2-12	
Cuadrado	de	4'0	X	4'0				A2-13	
Rectángulo	de	5'0	X	2'5				A2-14	
Rectángulo	de			3'0				A2-15	
Rectángulo	de	5'0	X	3'5				A2-16	
Rectángulo	de	5'0	X	4'0				A2-17	
Cuadrado	de	5'0	X,	5'0				A2-18	
Rectángulo	de			2'5				A2-19	
Rectángulo	de			3'0				A2-20	
Rectángulo	de			3'5				A2-21	•
Rectángulo	de			4'0				A2-22	٠
Cuadrado	de	6'0	X	6'0				A2-23	
Rectangulo	de			2'5				A2-24	
Rectangulo	de	7'0	X	3'0				A2-25	
Rectángulo	de	7'0	X	3'5				A2-26	
Rectángulo	de	7'0	X	4'0				A2-27	
Rectángulo	de	8'0	x	2'5				A2-28	
Rectángulo	de			3'0				A2-29	
Rectángulo	de	8'0	X	3'5				A2-30	
Rectángulo	de	8'0	X	4'0				A2-31	
Electrodo lo			рi	icas	de	2	m	A2-32	
Electrodo lo	ngitudinal	con	pi	cas	de	4	m	A2-33	
Electrodo lo				icas				A2-34	
Electrodo lo	ngitudinal	con	pi	cas	de	8	m	A2-35	

OBSERVACIONES

Los valores que se indican en las tablas corresponden a electrodos con picas de 14 mm de diámetro y conductor de cobre desnudo de 50 mm² sección. Para otros diámetros de pica y otras secciones de conductor, de los empleados en la práctica, pueden utilizarse igualmente estas tablas, ya que estas magnitudes no afectan prácticamente al comportamiento del electrodo.

A efectos de designación, se han incluido los códigos relativos a la configuración del electrodo, que hacen referencia en cada caso:

Cuadrado de 2.0 m x 2.0 m

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD - 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.216	0.0485	0.1470	20-20/5/00
4 picas	2	0.135	0.0335	0.0723	20-20/5/42
4 picas	4	0.101	0.0236	0.0467	20-20/5/44
	6	0.081	0.0181	0.0341	20-20/5/46
<u></u>	8	0.069	0.0146	0.0267	20-20/5/48
8 picas	2	0.116	0.0290	0.0548	20-20/5/82
o picas	4	0.084	0.0191	0.0324	20-20/5/84
	6	0.067	0.0140	0.0227	20-20/5/86
	8	0.056	0.0110	0.0173	20-20/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.205	0.0331	0.1396	20-20/8/00
A = i = =	2	0.129	0.0231	0.0699	20-20/8/42
4 picas	- 4	0.097	0.0165	0.0456	20-20/8/44
	6	0.078	0.0126	0.0336	20-20/8/46
	8	0.066	0.0102	0.0264	20-20/8/48
8 picas	2	0.110	0.0206	0.0530	20-20/8/82
o picas	4	0.080	0.0137	0.0320	20-20/8/84
	6	0.064	0.0102	0.0227	20-20/8/86
	8	0.054	0.0080	0.0176	20-20/8/88

Rectángulo de 2.0 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD - 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.196	0.0435	0.1313	20-25/5/00
4	2	0.128	0.0312	0.0674	20-25/5/42
4 picas	4	0.097	0.0224	0.0442	20-25/5/44
	6	0.079	0.0173	0.0325	20-25/5/46
	8	0.067	0.0141	0.0256	20-25/5/48
	2	0.110	0.0269	0.0514	20-25/5/82
8 picas	4	0.080	0.0180	0.0307	20-25/5/84
	6	0.064	0.0134	0.0215	20-25/5/86
	8	0.054	0.0106	0.0164	20-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.186	0.0299	0.1247	20-25/8/00
	2	0.122	0.0215	0.0651	20-25/8/42
4 picas	4	0.093	0.0156	0.0432	20-25/8/44
	6	0.076	0.0121	0.0320	20-25/8/46
	8	0.064	0.0099	0.0253	20-25/8/48
	2	0.104	0.0192	0.0497	20-25/8/82
8 picas	4	0.077	0.0131	0.0303	20-25/8/84
	6	0.062	0.0098	0.0215	20-25/8/86
	8	0.053	0.0078	0.0166	20-25/8/88

Rectangulo de 2.0 m x 3.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_D = Longitud de la pica en m.

PROFUNDIDAD - 0'5 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.181	0.0395	0.1188	20-30/5/00
4 picas	2	0.121	0.0291	0.0632	20-30/5/42
4 picas	4	0.093	0.0213	0.0421	20-30/5/44
	6	0.076	0.0166	0.0312	20-30/5/46
	8	0.065	0.0136	0.0246	20-30/5/48
9 nione	2	0.105	0.0252	0.0486	20-30/5/82
8 picas	4	0.077	0.0171	0.0293	20-30/5/84
	6	0.062	0.0128	0.0206	20-30/5/86
	8	0.053	0.0102	0.0157	20-30/5/88
					l ·

PROFUNDIDAD = 0'8 m

CONFIGURACION	Lp	RESISTENCIA	TENSION DE	TENSION DE	CODIGO
	(m)	Kr	PASO K _p	$\begin{array}{c} \text{CONTACTO EXT} \\ \text{K}_{\text{c}} = \text{K}_{\text{p(acc)}} \end{array}$	DE LA CONFIGURACION
Sin picas	-	0.172	0.0273	0.1128	20-30/8/00
A mione	2	0.116	0.0201	0.0611	20-30/8/42
4 picas	4	0.089	0.0149	0.0411	20-30/8/44
	6	0.073	0.0117	0.0307	20-30/8/46
<u></u>	8	0.062	0.0096	0.0244	20-30/8/48
9 ntone	2	0.100	0.0180	0.0470	20-30/8/82
8 picas	4	0.074	0.0124	0.0289	20-30/8/84
4	6	0.060	0.0094	0.0206	20-30/8/86
	8	0.051	0.0075	0.0159	20-30/8/88

Cuadrado de 2.5 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_{D} = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

	CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT Kc = Kp(acc)	CODIGO DE LA CONFIGURACION
	Sin picas	-	0.180	0.0395	0.1188	25-25/5/00
F	A nices	2	0.121	0.0291	0.0633	25-25/5/42
	4 picas	4	0.093	0.0213	0.0422	25-25/5/44
		6	0.076	0.0166	0.0312	25-25/5/46
1		8	0.065	0.0136	0.0247	25-25/5/48
	0	2	0.104	0.0252	0.0487	25-25/5/82
	8 picas	4	0.077	0.0171	0.0294	25-25/5/84
		6	0.062	0.0128	0.0206	25-25/5/86
		8	0.053	0.0102	0.0158	25-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.171	0.0272	0.1128	25-25/8/00
	2	0.116	0.0201	0.0612	25-25/8/42
4 picas	4	0.089	0.0149	0.0412	25-25/8/44
	6	0.073	0.0117	0.0307	25-25/8/46
	8	0.062	0.0096	0.0244	25-25/8/48
	2	0.100	0.0180	0.0470	25-25/8/82
8 picas	4	0.074	0.0125	0.0289	25-25/8/84
	6	0.060	0.0094	0.0206	25-25/8/86
	8	0.051	0.0075	0.0159	25-25/8/88

 K_r , Ω /($\Omega \cdot m$)

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

Rectangulo de 3.0 m x 2.5 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.167	0.0361	0.1083	30-25/5/00
4 picas	2	0.115	0.0274	0.0595	30-25/5/42
Picas	4	0.089	0.0203	0.0402	30-25/5/44
	6	0.074	0.0160	0.0300	30-25/5/46
	8	0.063	0.0131	0.0238	30-25/5/48
8 picas	2	0.100	0.0236	0.0462	30-25/5/82
P	4	0.074	0.0163	0.0281	30-25/5/84
•	6	0.060	0.0123	0.0198	30-25/5/86
	8	0.051	0.0098	0.0151	30-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	(m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.159	0.0250	0.1030	30-25/8/00
4	2	0.110	0.0189	0.0576	30-25/8/42
4 picas	4	0.086	0.0142	0.0393	30-25/8/44
	6	0.071	0.0112	0.0295	30-25/8/46
<u> </u>	8	0.061	0.0093	0.0235	30-25/8/48
8 picas	2	0.095	0.0169	0.0446	30-25/8/82
o picas	4	0.072	0.0119	0.0277	30-25/8/84
•	6	0.058	0.0090	0.0198	30-25/8/86
	8	0.050	0.0072	0.0153	30-25/8/88

Cuadrado de 3.0 m x 3.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. $L_{\rm p}$ = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.155	0.0332	0.0996	30-30/5/00
	2	0.110	0.0258	0.0563	30-30/5/42
4 picas	4	0.086	0.0193	0.0386	30-30/5/44
	6	0.071	0.0154	0.0290	30-30/5/46
	8	0.061	0.0127	0.0231	30-30/5/48
	2	0.095	0.0222	0.0440	30-30/5/82
8 picas	4	0.072	0.0155	0.0271	30-30/5/84
	6	0.058	0.0118	0.0191	30-30/5/86
	8	0.050	0.0095	0.0146	30-30/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.148	0.0231	0.0947	30-30/8/00
	2	0.105	0.0178	0.0545	30-30/8/42
4 picas	4	0.083	0.0135	0.0377	30-30/8/44
	6	0.069	0.0108	0.0285	30-30/8/46
	8	0.059	0.0090	0.0228	30-30/8/48
9	2	0.091	0.0160	0.0425	30-30/8/82
8 picas	4	0.069	0.0113	0.0266	30-30/8/84
	6	0.057	0.0087	0.0191	30-30/8/86
	8	0.048	0.0070	0.0147	30-30/8/88

 $K_r \Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

Rectangulo de 3.0 m x 3.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _c = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.145	0.0308	0.0921	30-35/5/00
4 picas	2	0.105	0.0244	0.0532	30-35/5/42
1	4	0.083	0.0185	0.0369	30-35/5/44
	6	0.069	0.0148	0.0279	30-35/5/46
	8	0.060	0.0123	0.0223	30-35/5/48
8 picas	2	0.091	0.0210	0.0419	30-35/5/82
Picas	4	0.069	0.0149	0.0261	30-35/5/84
	6	0.057	0.0114	0.0185	30-35/5/86
	8	0.049	0.0092	0.0142	30-35/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.139	0.0214	0.0876	30-35/8/00
4	2	0.101	0.0168	0.0516	30-35/8/42
4 picas	4	0.080	0.0129	0.0361	30-35/8/44
	6	0.067	0.0104	0.0275	30-35/8/46
	8	0.058	0.0087	0.0221	30-35/8/48
0	2	0.088	0.0151	0.0406	30-35/8/82
8 picas	4	0.067	0.0108	0.0256	30-35/8/84
	6	0.055	0.0084	0.0184	30-35/8/86
	8	0.047	0.0068	0.0142	30-35/8/88

Rectangulo de 4.0 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.146	0.0309	0.0924	40-25/5/00
	2	0.105	0.0244	0.0534	40-25/5/42
4 picas	4	0.083	0.0185	0.0370	40-25/5/44
	6	0.069	0.0148	0.0280	40-25/5/46
	8	0.060	0.0123	0.0223	40-25/5/48
	2	0.092	0.0211	0.0420	40-25/5/82
8 picas	4	0.070	0.0149	0.0261	40-25/5/84
	6	0.057	0.0114	0.0185	40-25/5/86
	8	0.049	0.0092	0.0142	40-25/5/88
	1			İ	

PROFUNDIDAD = 0'8 m

	CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
	Sin picas	-	0.139	0.0215	0.0879	40-25/8/00
		2	0.101	0.0168	0.0517	40-25/8/42
	4 picas	4	0.080	0.0129	0.0362	40-25/8/44
		6	0.067	0.0104	0.0275	40-25/8/46
		8	0.058	0.0087	0.0221	40-25/8/48
	0	2	0.088	0.0151	0.0407	40-25/8/82
	8 picas	4	0.067	0.0108	0.0257	40-25/8/84
١.,		6	0.055	0.0083	0.0184	40-25/8/86
		8	0.047	0.0068	0.0143	40-25/8/88

Rectangulo de 4.0 m x 3.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. $L_{\rm D}$ = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.137	0.0287	0.0858	40-30/5/00
4 picas	2	0.100	0.0231	0.0506	40-30/5/42
Picas	4	0.080	0.0178	0.0355	40-30/5/44
	6	0.067	0.0143	0.0270	40-30/5/46
	8	0.058	0.0119	0.0217	40-30/5/48
8 picas	2	0.088	0.0200	0.0402	40-30/5/82
P	4	0.067	0.0143	0.0252	40-30/5/84
	6	0.055	0.0110	0.0179	40-30/5/86
	8	0.047	0.0089	0.0137	40-30/5/88

PROFUNDIDAD = 0'8 m

					
CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.131	0.0200	0.0816	40-30/8/00
A piene	2	0.096	0.0160	0.0491	40-30/8/42
4 picas	4,	0.077	0.0124	0.0347	40-30/8/44
	6	0.065	0.0101	0.0266	40-30/8/46
	8	0.056	0.0084	0.0214	40-30/8/48
8 picas	2	0.084	0.0143	0.0389	40-30/8/82
o picas	4	0.065	0.0104	0.0247	40-30/8/84
	6	0.054	0.0081	0.0178	40-30/8/86
	8	0.046	0.0066	0.0138	40-30/8/88

 K_{r} , $\Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

ANEXO 2

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PULSTA A TIERRA

Rectangulo de 4.0 m x 3.5 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT Kc = Kp(acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.129	0.0268	0.0801	40-35/5/00
4 picas	2	0.096	0.0220	0.0482	40-35/5/42
4 picas	4	0.078	0.0171	0.0341	40-35/5/44
	.6	0.066	0.0138	0.0261	40-35/5/46
	8	0.057	0.0116	0.0210	40-35/5/48
0	2	0.085	0.0190	0.0385	40-35/5/82
8 picas	4	0.065	0.0137	0.0244	40-35/5/84
	6	0.054	0.0106	0.0174	40-35/5/86
	8	0.046	0.0086	0.0134	40-35/5/88

PROFUNDIDAD = 0'8 m

L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT $K_c = K_p(acc)$	CODIGO DE LA CONFIGURACION
-	0.124	0.0187	0.0763	40-35/8/00
2	0.092	0.0152	0.0468	40-35/8/42
4	0.075	0.0119	0.0334	40-35/8/44
6	0.063	0.0097	0.0257	40-35/8/46
8	0.055	0.0082	0.0208	40-35/8/48
2	0.081	0.0136	0.0373	40-35/8/82
4	0.063	0.0100	0.0239	40-35/8/84
6	0.052	0.0078	0.0173	40-35/8/86
8	0.045	0.0064	0.0134	40-35/8/88
	(m) - 2 4 6 8 2 4 6	-	Lp (m) K _r PASO K _p - 0.124 0.0187 2 0.092 0.0152 4 0.075 0.0119 6 0.063 0.0097 8 0.055 0.0082 2 0.081 0.0136 4 0.063 0.0100 6 0.052 0.0078	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cuadrado de 4.0 m x 4.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

	Γ.	DECTETE			
201157.0110.4.07.011	Lp	RESISTENCIA	TENSION DE	TENSION DE	CODIGO
CONFIGURACION	(-)	٠.	PASO	CONTACTO EXT	DE LA
	(m)	K _r	K _p	$K_c = K_{p(acc)}$	CONFIGURACION
Sin picas	-	0.123	0.0252	0.0753	40-40/5/00
4	2	0.092	0.0210	0.0461	40-40/5/42
4 picas	4	0.075	0.0164	0.0330	40-40/5/44
	6	0.064	0.0134	0.0254	40-40/5/46
	8	0.056	0.0113	0.0205	40-40/5/48
	2	0.082	0.0181	0.0371	40-40/5/82
8 picas	4	0.063	0.0132	0.0237	40-40/5/84
	6	0.053	0.0103	0.0170	40-40/5/86
	8	0.045	0.0084	0.0131	40-40/5/88

PROFUNDIDAD = 0'8 m

					
CONFIGURACION	Lр	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
	(m)	K _r	Κ _p	K _c = K _{p(acc)}	CONFIGURACION
Sin picas	-	0.117	0.0176	0.0717	40-40/8/00
4 nione	2	0.089	0.0144	0.0447	40-40/8/42
4 picas	4	0.073	0.0114	0.0323	40-40/8/44
	6	0.062	0.0094	0.0250	40-40/8/46
<u> </u>	8	0.054	0.0079	0.0203	40-40/8/48
9 minos	2	0.079	0.0130	0.0359	40-40/8/82
8 picas	4	0.061	0.0096	0.0233	40-40/8/84
•	6	0.051	0.0075	0.0169	40-40/8/86
	- 8	0.044	0.0062	0.0131	40-40/8/88

Rectangulo de 5.0 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.130	0.0269	0.0806	50-25/5/00
4 piese	2	0.097	0.0221	0.0483	50-25/5/42
4 picas	4	0.078	0.0171	0.0342	50-25/5/44
	6	0.066	0.0138	0.0262	50-25/5/46
	8	0.057	0.0116	K _c = K _{p(acc)} 0.0806 0.0483 0.0342 0.0262 0.0211 0.0386 0.0244 0.0174	50-25/5/48
8 picas	2	0.085	0.0191	0.0386	50-25/5/82
Picas	4	0.066	0.0137	0.0244	50-25/5/84
	6	0.054	0.0106	0.0174	50-25/5/86
	8	0.046	0.0086	0.0134	50-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	(m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.124	0.0188	0.0767	50-25/8/00
	2	0.093	0.0152	0.0469	50-25/8/42
4 picas	4	0.075	0.0119	0.0335	50-25/8/44
	6	0.064	0.0097	0.0258	50-25/8/46
_	8	0.055	0.0082	0.0209	50-25/8/48
0	2	0.082	0.0136	0.0375	50-25/8/82
8 picas	4	0.063	0.0100	0.0240	50-25/8/84
	6	0.053	0.0078	0.0174	50-25/8/86
	8	0.045	0.0063	0.0135	50-25/8/88

Rectangulo de 5.0 m x 3.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_{D} = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT Kc = Kp(acc)	CODIGO DE LA CONFIGURACION
Sin picas	- 1	0.123	0.0252	0.0755	50-30/5/00
4 picas	2	0.093	0.0210	0.0461	50-30/5/42
1	4	0.076	0.0164	0.0329	50-30/5/44
	6	0.064	0.0134	0.0253	50-30/5/46
<u></u>	8	0.056	0.0113	0.0205	50-30/5/48
8 picas	2	0.082	0.0182	0.0371	50-30/5/82
P	4	0.064	0.0132	0.0236	50-30/5/84
	6	0.053	0.0103	0.0169	50-30/5/86
	8	0.045	0.0084	0.0130	50-30/5/88
<u> </u>		4			

PROFUNDIDAD = 0'8 m

CONFIGURACION	Lр	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
	(m)	Kr	К _р	$K_c = K_{p(acc)}$	CONFIGURACION
Sin picas	-	0.118	0.0177	0.0719	50-30/8/00
4 picas	2	0.089	0.0145	0.0447	50-30/8/42
Picas	4	0.073	0.0114	0.0323	50-30/8/44
	6	0.062	0.0094	0.0250	50-30/8/46
<u></u>	8	0.054	0.0079	0.0203	50-30/8/48
8 picas	2	0.079	0.0130	0.0359	50-30/8/82
P	4	0.062	0.0096	0.0232	50-30/8/84
↓	6	0.051	0.0075	0.0169	50-30/8/86
	8	0.044	0.0062	0.0131	50-30/8/88

ANEXO 2

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 5.0 m x 3.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.117	0.0238	0.0710	50-35/5/00
	2	0.089	0.0201	0.0440	50-35/5/42
4 picas	4	0.073	0.0158	0.0318	50-35/5/44
	6	0.062	0.0130	0.0246	50-35/5/46
	8	0.054	0.0110	0.0199	50-35/5/48
	2	0.079	0.0174	0.0357	50-35/5/82
8 picas	4	0.062	0.0127	0.0229	50-35/5/84
	6	0.051	0.0100	0.0165	50-35/5/86
	8	0.044	0.0081	0.0127	50-35/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.112	0.0166	0.0676	50-35/8/00
	2	0.086	0.0138	0.0428	50-35/8/42
4 picas	4	0.071	0.0110	0.0311	50-35/8/44
	6	0.060	0.0091	0.0242	50-35/8/46
	8	0.053	0.0077	0.0197	50-35/8/48
0	2	0.076	0.0124	0.0346	50-35/8/82
8 picas	4	0.060	0.0092	0.0225	50-35/8/84
	6	0.050	0.0073	0.0164	50-35/8/86
	8	0.043	0.0060	0.0128	50-35/8/88

 K_{r} , $\Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

Rectangulo de 5.0 m x 4.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.111	0.0225	0.0670	50-40/5/00
4 picas	2	0.086	0.0192	0.0421	50-40/5/42
Picas	4	0.071	0.0153	0.0307	50-40/5/44
	6	0.061	0.0126	0.0239	50-40/5/46
	8	0.053	0.0107	0.0194	50-40/5/48
8 picas	2	0.076	0.0166	0.0344	50-40/5/82
Picas	4	0.060	0.0123	0.0223	50-40/5/84
	6	0.050	0.0097	0.0161	50-40/5/86
	8	0.043	0.0079	0.0124	50-40/5/88

PROFUNDIDAD = 0'8 m.

		DECTETAL	TENCTON OF	TENGTON DE	l
CONFIGURACION	Lp	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
	(m)	K _r	К _р	$K_c = K_{p(acc)}$	CONFIGURACION
Sin picas	-	0.107	0.0157	0.0639	50-40/8/00
4 picas	2	0.083	0.0132	0.0410	50-40/8/42
Picas	4	0.068	0.0106	0.0301	50-40/8/44
	6	0.059	0.0088	0.0235	50-40/8/46
	8	0.052	0.0075	0.0192	50-40/8/48
8 picas	2	0.074	0.0118	0.0334	50-40/8/82
o picas	4	0.058	0.0089	0.0219	50-40/8/84
	6	0.049	0.0071	0.0160	50-40/8/86
	8	0.042	0.0058	0.0125	50-40/8/88

Cuadrado de 5.0 m x 5.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. $L_{\rm p}$ = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.102	0.0203	0.0605	50-50/5/00
4 picas	2	0.080	0.0177	0.0390	50-50/5/42
4 picas	4	0.067	0.0143	0.0288	50-50/5/44
	6	0.058	0.0119	0.0227	50-50/5/46
	8	0.051	0.0102	0.0185	50-50/5/48
0	2	0.072	0.0154	0.0322	50-50/5/82
8 picas	4	0.057	0.0115	0.0212	50-50/5/84
	6	0.048	0.0091	0.0155	50-50/5/86
	8	0.042	0.0076	0.0120	50-50/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.098	0.0142	0.0577	50-50/8/00
	2	0.077	0.0122	0.0379	50-50/8/42
4 picas	4	0.065	0.0099	0.0283	50-50/8/44
	6	0.056	0.0083	0.0223	50-50/8/46
	8	0.049	0.0071	<pre>K_c = K_{p(acc)} 0.0577 0.0379 0.0283 0.0223 0.0184 0.0313 0.0208 0.0153</pre>	50-50/8/48
0	2	0.069	0.0109	0.0313	50-50/8/82
8 picas	4	0.055	0.0083	0.0208	50-50/8/84
	6	0.047	0.0067	0.0153	50-50/8/86
	8	0.040	0.0055	0.0120	50-50/8/88

 K_r , $\Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

Rectángulo de 6.0 m x 2.5 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. $L_{\rm p}$ = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.118	0.0239	0.0715	60-25/5/00
4 picas	2	0.090	0.0202	0.0442	60-25/5/42
4 picas	4	0.074	0.0159	0.0318	60-25/5/44
	6	0.063	0.0130	0.0246	60-25/5/46
	8	0.055	0.0110	0.0199	60-25/5/48
8 picas	2	0.080	0.0175	0.0358	60-25/5/82
Picas	4	0.062	0.0128	0.0229	60-25/5/84
	6	0.052	0.0100	0.0165	60-25/5/86
	8	0.045	0.0082	0.0127	60-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	Lp	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
	(m)	, K _r	К _р	K _c = K _{p(acc)}	CONFIGURACION
Sin picas	-	0.113	0.0167	0.0681	60-25/8/00
4 picas	2	0.087	0.0139	0.0430	60-25/8/42
Picas	4	0.071	0.0110	0.0312	60-25/8/44
	6	0.061	0.0091	0.0243	60-25/8/46
<u> </u>	8	0.053	0.0077	0.0198	60-25/8/48
8 picas	2	0.077	0.0124	0.0348	60-25/8/82
	4	0.060	0.0092	0.0226	60-25/8/84
	6	0.050	0.0073	0.0165	60-25/8/86
	8	0.043	0.0060	0.0128	60-25/8/88

Rectangulo de 6.0 m x 3.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.112	0.0225	0.0674	60-30/5/00
	2	0.087	0.0193	0.0423	60-30/5/42
4 picas	4	0.071	0.0153	0.0307	60-30/5/44
	6	0.061	0.0126	0.0239	60-30/5/46
	8	0.053	0.0107	0.0194	60-30/5/48
0	2	0.077	0.0167	0.0344	60-30/5/82
8 picas	4	0.061	0.0123	0.0223	60-30/5/84
	6	0.050	0.0097	0.0161	60-30/5/86
	8	0.044	0.0079	0.0124	60-30/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.107	0.0158	0.0642	60-30/8/00
	2	0.083	0.0132	0.0411	60-30/8/42
4 picas	4	0.069	0.0106	0.0301	60-30/8/44
	6	0.059	0.0088	0.0236	60-30/8/46
	8	0.052	0.0075	0.0192	60-30/8/48
	2	0.074	0.0119	0.0335	60-30/8/82
8 picas	.4	0.059	0.0089	0.0219	60-30/8/84
	6	0.049	0.0070	0.0160	60-30/8/86
	8	0.042	0.0058	0.0125	60-30/8/88

 K_r , $\Omega / (\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

ANEXO 2

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 6.0 m x 3.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO Kp	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.107	0.0213	0.0637	60-35/5/00
4 picas	2	0.083	0.0185	0.0405	60-35/5/42
Prous	4	0.069	0.0148	0.0297	60-35/5/44
	6	0.059	0.0122	0.0232	60-35/5/46
	8	0.052	0.0104	0.0189	60-35/5/48
8 picas	2	0.074	0.0160	0.0332	60-35/5/82
Pricas	4	0.059	0.0119	0.0216	60-35/5/84
	6	0.049	0.0094	0.0157	60-35/5/86
	8	0.043	0.0077	0.0121	60-35/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	(w) Tp	RESISTENCIA K _r	TENSION DE Paso K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.102	0.0149	0.0608	60-35/8/00
4 picas	2	0.080	0.0127	0.0394	60-35/8/42
4 picas	4	0.067	0.0103	0.0291	60-35/8/44
	6	0.058	0.0085	0.0229	60-35/8/46
	8	0.051	0.0073	0.0187	60-35/8/48
9 niese	2	0.072	0.0114	0.0322	60-35/8/82
8 picas	4	0.057	0.0086	0.0213	60-35/8/84
	6	0.048	0.0068	0.0156	60-35/8/86
	8	0.041	0.0057	0.0122	60-35/8/88

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 6.0 m x 4.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0.5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.102	0.0203	0.0605	60-40/5/00
4	2	0.080	0.0177	0.0389	60-40/5/42
4 picas	4	0.067	0.0143	0.0287	60-40/5/44
	6	0.058	0.0119	0.0226	60-40/5/46
	8	0.051	0.0102	0.0185	60-40/5/48
0	2	0.072	0.0154	0.0321	60-40/5/82
8 picas	4	0.057	0.0115	0.0211	60-40/5/84
	6	0.048	0.0091	0.0154	60-40/5/86
	8	0.042	0.0075	0.0119	60-40/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	(m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.098	0.0142	0.0577	60-40/8/00
	2	0.078	0.0122	0.0379	60-40/8/42
4 picas	4	0.065	0.0099	0.0282	60-40/8/44
	6	0.056	0.0083	0.0223	60-40/8/46
	8	0.049	0.0071	0.0183	60-40/8/48
	2	0.069	0.0109	0.0312	60-40/8/82
8 picas	4	0.055	0.0083	0.0208	60-40/8/84
	6	0.047	0.0067	0.0153	60-40/8/86
	8	0.041	0.0055	0.0119	60-40/8/88

 K_r , $\Omega / (\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Cuadrado de 6.0 m x 6.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0.5 m

CONFIGURACION	L _p	RESISTENCIA	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.087	0.0169	0.0506	60-60/5/00
	2	0.071	0.0154	0.0337	60-60/5/42
4 picas	4	0.061	0.0127	0.0256	60-60/5/44
	6	0.053	0.0108	0.0205	60-60/5/46
	8	0.047	0.0093	0.0170	60-60/5/48
0	2	0.064	0.0134	0.0285	60-60/5/82
8 picas	4	0.052	0.0103	0.0193	60-60/5/84
	6	0.044	0.0083	0.0143	60-60/5/86
	8	0.039	0.0069	0.0112	60-60/5/88
			1	e de la companya de	*

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.084	0.0119	0.0483	60-60/8/00
A minne	2	0.069	0.0105	0.0329	60-60/8/42
4 picas	4	0.059	0.0088	0.0252	60-60/8/44
	6	0.051	0.0075	0.0202	60-60/8/46
<u></u>	8	0.046	0.0065	0.0168	60-60/8/48
0	2	0.062	0.0094	0.0277	60-60/8/82
8 picas	4	0.050	0.0074	0.0190	60-60/8/84
	6	0.043	0.0060	0.0142	60-60/8/86
	8	0.038	0.0050	0.0111	60-60/8/88

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 7.0 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.108	0.0214	0.0645	70-25/5/00
	2	0.084	0.0186	0.0409	70-25/5/42
4 picas	4	0.070	0.0148	0.0299	70-25/5/44
	6	0.060	0.0123	0.0233	70-25/5/46
	8	0.053	0.0104	0.0190	70-25/5/48
	2	0.076	0.0162	0.0335	70-25/5/82
8 picas	4	0.060	0.0120	0.0218	70-25/5/84
	6	0.050	0.0094	0.0158	70-25/5/86
	8	0.043	0.0078	0.0122	70-25/5/88

PROFUNDIDAD = 0'8 m

_						<u> </u>
	CONFIGURACION	Lp	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
		(m)	K _r	K _p	Kc = Kp(acc)	DE LA CONFIGURACION
Γ	Sin picas	-	0.103	0.0151	0.0615	70-25/8/00
Γ		2	0.081	0.0128	0.0397	70-25/8/42
	4 picas	4	0.068	0.0103	0.0293	70-25/8/44
		6	0.058	0.0086	0.0231	70-25/8/46
	1	8	0.051	0.0073	0.0189	70-25/8/48
	0 - 1	2	0.073	0.0115	0.0326	70-25/8/82
l	8 picas	4	0.058	0.0086	0.0215	70-25/8/84
		6	0.048	0.0068	0.0158	70-25/8/86
		8	0.042	0.0057	0.0123	70-25/8/88

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 7.0 m x 3.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_{D} = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.103	0.0203	0.0610	70-30/5/00
4 picas	2	0.081	0.0178	0.0391	70-30/5/42
•	4	0.068	0.0143	0.0288	70-30/5/44
	6	0.058	0.0119	0.0226	70-30/5/46
	8	0.051	0.0102	0.0185	70-30/5/48
8 picas	2	0.073	0.0155	0.0322	70-30/5/82
P Proces	4	0.058	0.0115	0.0211	70-30/5/84
	6	0.048	0.0091	0.0154	70-30/5/86
	8	0.042	0.0075	0.0119	70-30/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.099	0.0142	0.0581	70-30/8/00
A mione	2	0.078	0.0122	0.0381	70-30/8/42
4 picas	4	0.066	0.0099	0.0283	70-30/8/44
	6	0.057	0.0083	0.0223	70-30/8/46
	8	0.050	0.0071	0.0184	70-30/8/48
O minna	2	0.070	0.0110	0.0314	70-30/8/82
8 picas	4	0.056	0.0083	0.0208	70-30/8/84
	6	0.047	0.0066	0.0153	70-30/8/86
	8	0.041	0.0055	0.0120	70-30/8/88

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 7.0 m x 3.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.098	0.0193	0.0579	70-35/5/00
	2	0.078	0.0171	0.0376	70-35/5/42
4 picas	4	0.066	0.0138	0.0279	70-35/5/44
	6	0.057	0.0116	0.0220	70-35/5/46
	8	0.050	0.0099	0.0181	70-35/5/48
0	2	0.070	0.0149	0.0311	70-35/5/82
8 picas	4	0.056	0.0112	0.0206	70-35/5/84
	6	0.047	0.0089	0.0150	70-35/5/86
	8	0.041	0.0074	0.0117	70-35/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.094	0.0136	0.0553	70-35/8/00
	2	0.076	0.0117	0.0366	70-35/8/42
4 picas	4	0.064	0.0096	0.0274	70-35/8/44
	6	0.055	0.0081	0.0217	70-35/8/46
	8	0.049	0.0069	0.0179	70-35/8/48
	2	0.068	0.0105	0.0303	70-35/8/82
8 picas	4	0.054	0.0080	0.0203	70-35/8/84
	6	0.046	0.0065	0.0150	70-35/8/86
	8	0.040	0.0054	0.0117	70-35/8/88

 K_r , $\Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 7.0 m x 4.0 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.094	0.0184	0.0553	70-40/5/00
4 nices	2	0.076	0.0165	0.0362	70-40/5/42
4 picas	4	0.064	0.0134	0.0271	70-40/5/44
	6	0.056	0.0113	0.0215	70-40/5/46
	8	0.049	0.0097	0.0177	70-40/5/48
8 picas	2	0.068	0.0143	0.0302	70-40/5/82
o picas	4	0.055	0.0108	0.0201	70-40/5/84
	6	0.046	0.0087	0.0148	70-40/5/86
4-4-4	8	0.040	0.0072	0.0115	70-40/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	Lp	RESISTENCIA	TENSION DE PASO	TENSION DE CONTACTO EXT	CODIGO DE LA
	(m)	K _r	К _р	Kc = Kp(acc)	CONFIGURACION
Sin picas	-	0.091	0.0129	0.0528	70-40/8/00
4 picas	2	0.073	0.0113	0.0353	70-40/8/42
Picus	4	0.062	0.0093	0.0266	70-40/8/44
	6	0.054	0.0079	0.0212	70-40/8/46
<u> </u>	8	0.048	0.0068	0.0175	70-40/8/48
8 picas	2	0.066	0.0101	0.0294	70-40/8/82
•	4	0.053	0.0078	0.0198	70-40/8/84
,	6	0.045	0.0063	0.0147	70-40/8/86
4	8	0.039	0.0053	0.0115	70-40/8/88

ANEXU 2

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 8.0 m x 2.5 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm. L_D = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO Kp	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.099	0.0194	0.0587	80-25/5/00
4 piese	2	0.079	0.0173	0.0379	80-25/5/42
4 picas	4	0.067	0.0139	0.0281	80-25/5/44
	6	0.058	0.0116	0.0221	80-25/5/46
	8	0.051	0.0100	0.0182	80-25/5/48
0	2	0.072	0.0151	0.0314	80-25/5/82
8 picas	4	0.057	0.0113	0.0207	80-25/5/84
	6	0.048	0.0090	0.0151	80-25/5/86
	8	0.042	0.0074	0.0117	80-25/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	(m)	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.095	0.0137	0.0560	80-25/8/00
4	2	0.077	0.0119	0.0369	80-25/8/42
4 picas	4	0.064	0.0097	0.0276	80-25/8/44
	6	0.056	0.0081	0.0219	80-25/8/46
	8	0.049	0.0070	0.0180	80-25/8/48
0.00	2	0.069	0.0107	0.0306	80-25/8/82
8 picas	4	0.055	0.0081	0.0205	80-25/8/84
	6	0.047	0.0065	0.0151	80-25/8/86
	8	0.040	0.0054	0.0118	80-25/8/88

 K_r , $\Omega /(\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

A2- 29

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 8.0 m x 3.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. $L_{\rm D}$ = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT $K_c = K_{p(acc)}$	CODIGO DE LA CONFIGURACION
Sin picas	1	0.095	0.0185	0.0557	80-30/5/00
4 nions	2	0.077	0.0165	0.0364	80-30/5/42
4 picas	4	0.065	0.0135	0.0272	80-30/5/44
	6	0.056	0.0113	0.0215	80-30/5/46
L	8	0.050	0.0097	0.0177	80-30/5/48
8 picas	2	0.069	0.0145	0.0303	80-30/5/82
•	4	0.055	0.0109	0.0201	80-30/5/84
\ \ \ \ \ \ \ \ \ \ \ \ \ \	6	0.047	0.0087	0.0148	80-30/5/86
	8	0.041	0.0072	0.0115	80-30/5/88

PROFUNDIDAD = 0'8 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.091	0.0130	0.0532	80-30/8/00
4 picas	2	0.074	0.0113	0.0355	80-30/8/42
Picas	4	0.062	0.0093	0.0267	80-30/8/44
	6	0.054	0.0079	0.0213	80-30/8/46
	8	0.048	0.0068	0.0176	80-30/8/48
8 picas	2	0.067	0.0102	0.0296	80-30/8/82
o picas	4	0.054	0.0078	0.0199	80-30/8/84
	6	0.045	0.0063	0.0147	80-30/8/86
4	8	0.040	0.0052	0.0116	80-30/8/88

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 8.0 m x 3.5 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.091	0.0176	0.0531	80-35/5/00
	2	0.074	0.0159	0.0351	80-35/5/42
4 picas	4	0.063	0.0130	0.0264	80-35/5/44
	6	0.055	0.0110	0.0210	80-35/5/46
	8	0.048	0.0095	0.0173	80-35/5/48
	2	0.067	0.0139	0.0294	80-35/5/82
8 picas	4	0.054	0.0106	0.0196	80-35/5/84
	6	0.046	0.0085	0.0144	80-35/5/86
	8	0.040	0.0070	0.0113	80-35/5/88

PROFUNDIDAD - 0'8 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _{p(acc)}	CODIGO DE LA CONFIGURACION
Sin picas	-	0.088	0.0124	0.0507	80-35/8/00
	2	0.071	0.0109	0.0342	80-35/8/42
4 picas	4	0.061	0.0090	0.0259	80-35/8/44
	6	0.053	0.0076	0.0207	80-35/8/46
<u> </u>	8	0.047	0.0066	0.0172	80-35/8/48
	2	0.065	0.0098	0.0286	80-35/8/82
8 picas	4	0.052	0.0076	0.0194	80-35/8/84
	6	0.044	0.0061	0.0144	80-35/8/86
	8	0.039	0.0051	0.0113	80-35/8/88

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Rectangulo de 8.0 m x 4.0 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm. L_p = Longitud de la pica en m.

PROFUNDIDAD = 0'5 m

	CONFIGURACION	L _p	RESISTENCIA K _r	TENSION DE PASO ^K p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
	Sin picas	-	0.088	0.0169	0.0508	80-40/5/00
	4 picas	2	0.072	0.0154	0.0338	80-40/5/42
	+ picas	4	0.061	0.0127	0.0255	80-40/5/44
		6	0.053	0.0107	0.0204	80-40/5/46
İ		8	0.047	0.0093	0.0169	80-40/5/48
	8 picas	2	0.065	0.0134	0.0284	80-40/5/82
	Picas	4	0.053	0.0103	0.0192	80-40/5/84
		6	0.045	0.0083	0.0141	80-40/5/86
		8	0.039	0.0069	0.0110	80-40/5/88

PROFUNDIDAD - 0'8 m

CONFIGURACION	L _p (m)	RESISTENCIA K _r	TENSION DE PASO K _p	TENSION DE CONTACTO EXT K _C = K _p (acc)	CODIGO DE LA CONFIGURACION
Sin picas	-	0.084	0.0119	0.0485	80-40/8/00
A =====	2	0.069	0.0105	0.0329	80-40/8/42
4 picas	4 .	0.059	0.0088	0.0251	80-40/8/44
	6	0.052	0.0074	0.0202	80-40/8/46
	8	0.046	0.0065	0.0168	80-40/8/48
0 =====	2	0.063	0.0095	0.0277	80-40/8/82
8 picas	4	0.051	0.0073	0.0189	80-40/8/84
	6	0.043	0.0060	0.0141	80-40/8/86
	8	0.038	0.0050	0.0111	80-40/8/88

 K_r , $\Omega / (\Omega \cdot m)$

 K_p , $K_c = K_{p(acc)} V/(\Omega \cdot m)(A)$

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

ANEXO 2

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Picas en hilera unidas por un conductor horizontal.

Separación entre picas : 3 m

Longitud pica = 2 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm.

PROFUNDIDAD = 0'5 m.

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,201	0,0392	5/22
3	0,135	0,0252	5/32
4	0,104	0,0184	5/42
6	0,073	0,0120	5/62
8	0,0572	0,00345	5/82

PROFUNDIDAD = 0'8 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO	CODIGO DE LA CONFIGURACION
2	0,194	0,0253	8/22
3	0,130	0,0170	8/32
4	0,100	0,0127	8/42
6	0,0707	0,00833	8/62
8	0,0556	0,00255	8/82

 $K_r \Omega /(\Omega \cdot m)$

 $K_D = V/(\Omega \cdot m)(A)$

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Picas en hilera unidas por un conductor horizontal Separación entre picas : 6 m Longitud pica = 4 m.

Sección conductor = 50 mm^2 . Diámetro picas = 14 mm.

PROFUNDIDAD = 0'5 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,113	0,0208	5/24
3	0,075	0,0128	5/34
4	0,0572	0,00919	5/44
6	0,0399	0,00588	5/64
8	0,0311	0,00432	5/84

PROFUNDIDAD = 0'8 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,110	0,0139	8/24
3	0,073	0,0087	8/34
4	0,0558	0,00633	8/44
6	0,0390	0,00408	8/64
8	0,0305	0,00301	8/84

 $K_r \Omega /(\Omega \cdot m)$

 $K_D V/(\Omega \cdot m)(A)$

CONFIGURACIONES TIPO DE ELECTRODOS DE TIERRA TABLAS CON SUS PARAMETROS CARACTERISTICOS

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Picas en hilera unidas por un conductor horizontal. Separación entre picas : 9 m Longitud pica = 6 m.

> Sección conductor = 50 mm². Diámetro picas = 14 mm.

PROFUNDIDAD = 0'5 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,0802	0,0141	5/26
3	0,0528	0,00853	5/36
4	0,0401	0.00610	5/46
6	0,0278	0,00388	5/66
8	0,0217	0,00285	5/86

PROFUNDIDAD = 0'8 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,0782	0,00948	8/26
3	0,0516	0,00583	8/36
4	0,0393	0,00419	8/46
6	0,0273	0,00268	8/66
8	0,0213	0,00197	8/86

 $K_r \Omega /(\Omega \cdot m)$

 $K_{\mathbf{p}} = V/(\Omega \cdot \mathbf{m})(A)$

PARAMETROS CARACTERISTICOS DE ELECTRODOS DE PUESTA A TIERRA

Picas en hilera unidas por un conductor horizontal.

Separación entre picas: 12 m

Longitud pica = 8 m.

Sección conductor = 50 mm². Diámetro picas = 14 mm.

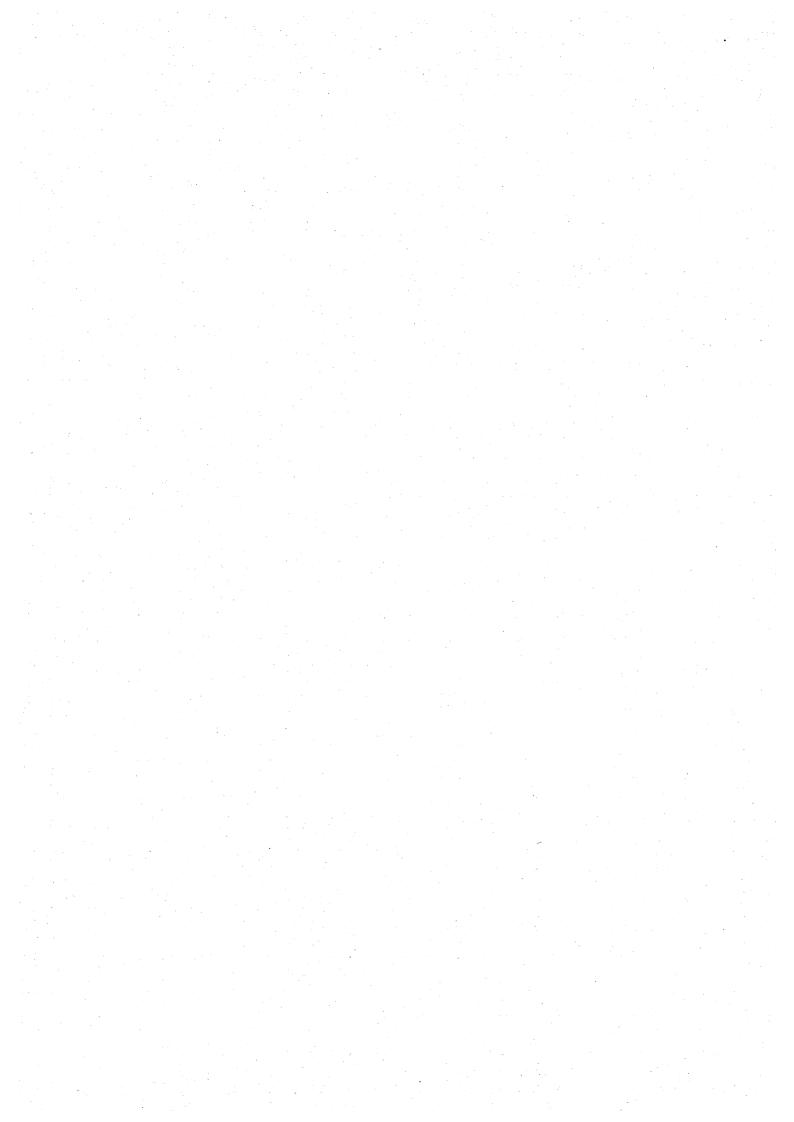
PROFUNDIDAD = 0'5 m.

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,0627	0,0107	5/28
3	0,0410	0,00640	5/38
4	0,0311	0,00456	5/48
6	0,0215	0,00290	5/68
8	0,0167	0,00212	5/88

PROFUNDIDAD = 0'8 m

NUMERO DE PICAS	RESISTENCIA K _r	TENSION DE PASO K _p	CODIGO DE LA CONFIGURACION
2	0,0612	0,00720	8/28
3	0,0402	0,00437	8/38
4	0,0305	0,00313	8/48
6	0,0211	0,00200	8/68
8	0,0164	0.00146	8/88

 $K_r \Omega /(\Omega \cdot m)$


 $K_p = V/(\Omega \cdot m)(A)$

A 3 - 1

ANEXO 3

RELACION ENTRE RESISTENCIA DE PUESTA A TIERRA Y TENSIONES DE PASO Y DE CONTACTO

RELACION ENTRE LA RESISTENCIA DE PUESTA A TIERRA Y LAS TENSIONES DE PASO Y CONTACTO

Para demostrar la relación que existe entre la resistencia de puesta a tierra y las tensiones de paso y contacto, inicialmente se analiza el caso de una pica.

Como ya se ha dicho anteriormente , la integración del aporte de las esferas diferenciales en que se divide el electrodo, conduce, para geometrías de electrodo simples, a fórmulas matemáticas Para el caso de una pica son las siguientes:

$$R_{t} = \frac{\rho}{2\Pi L}$$
 in $(\frac{4 L}{d})$

$$U_{X} = \frac{I_{d} \rho}{2\pi L} \ln \left[\frac{L + \sqrt{\chi^{2} + L^{2}}}{\chi} \right]$$

Siendo:

R_t, Resistencia de puesta a tierra

 U_X , Potencial del punto "x"

 $\hat{oldsymbol{
ho}}$. Resistividad del terreno

I_d. Intensidad de defecto

L'. Longitud de la pica d'. Diámetro de la pica

X . Distancia de la pica al punto "x"

Las fórmulas anteriores pueden expresarse en la forma siguiente:

$$R_t = \rho \cdot K_r$$

 $U_x = \rho \cdot I_d \cdot K_x$

en donde:

 K_r es sólo función de "d" (diámetro de la pica) y "L" (longitud de la pica)

es sólo función de "L"(longitud de la pica) y "X" (distancia a la pica)

Con lo cual, para una longitud y diámetro de pica concretos, y un punto a la distancia "X" fijo, $K_{\mathbf{r}}$ y $K_{\mathbf{x}}$ son parametros constantes. Siendo sus dimensiones :

$$K_r$$
 , Resistencia "unitaria" en $\frac{\Omega}{\Omega \cdot m}$

$$K_X$$
 , Potencial "unitario" del punto "x" en $\frac{V}{(\Omega \cdot m) \cdot (A)}$

Análogamente se determinan para las tensiones de paso y contacto, las expresiones siguientes:

$$V'_{p} = U_{x1} - U_{x2} = \rho \cdot I_{d} \cdot K_{x1} - \rho \cdot I_{d} \cdot K_{x2} = \rho \cdot I_{d} \cdot K_{p}$$

$$V'_c = R_t I_d - U_{x1} = \rho \cdot K_r \cdot I_d - \rho \cdot I_d \cdot K_{x1} = \rho \cdot I_d \cdot K_c$$

Siendo:

$$K_p$$
, Tensión "unitaria" de paso en $\frac{V}{(\Omega \cdot m) \cdot (A)}$

$$K_{c}$$
, Tensión "unitaria" de contacto en $\frac{V}{(\Omega \cdot m) \cdot (A)}$

De las expresiones anteriores se deduce que la relación entre la resistencia de puesta a tierra y las tensiones de paso y contacto, para una geometría de electrodo concreta, quedarán determinadas por las fórmulas siguientes:

$$\frac{V'_p}{R_t} = \frac{I_d \cdot K_p}{K_r} \qquad \frac{V'_c}{R_t} = \frac{I_d \cdot K_c}{K_r}$$

Para el caso de electrodos más complicados, se llega igualmente a expresiones de K_r , K_p y K_c , en función de las distintas distancias que intervienen según la geometría del electrodo. Y, para cada geometría definida, se obtiene un valor de los parámetros K_r , K_p y K_c . En las tablas del Anexo 2 se indican los valores de dichos parámetros para las geometrías en ellas consideradas.

Ejemplo: Electrodo constituido por un cuadrado de 4 x 4 m con una pica de 2 m. en cada vértice, enterradas a una profundidad de 0,5 m.

Para esta geometría de electrodo la tabla correspondiente del Anexo 2 da los siguientes valores:

$$K_r = 0.092$$
 $K_p = 0.0210$ $K_c = 0.0461$

De lo que se deduce que :

$$V_p^* = \frac{I_d \cdot R_t \cdot K_p}{K_r} = 0.228 \cdot I_d \cdot R_t$$

$$V_c = \frac{I_d \cdot R_t \cdot K_c}{K_r} = 0.501 \cdot I_d \cdot R_t$$

Como la resistencia de puesta a tierra y la intensidad de defecto están relacionadas a través del tipo de instalación (tensión de alimentación y sistema de puesta a tierra), puede determinarse la relación entre dicha resistencia y las tensiones de paso y contacto.

Si consideramos una red de tensión de servicio 20 kV con el neutro puesto a tierra a través de una reactancia de X = 25 ohmios, entonces :

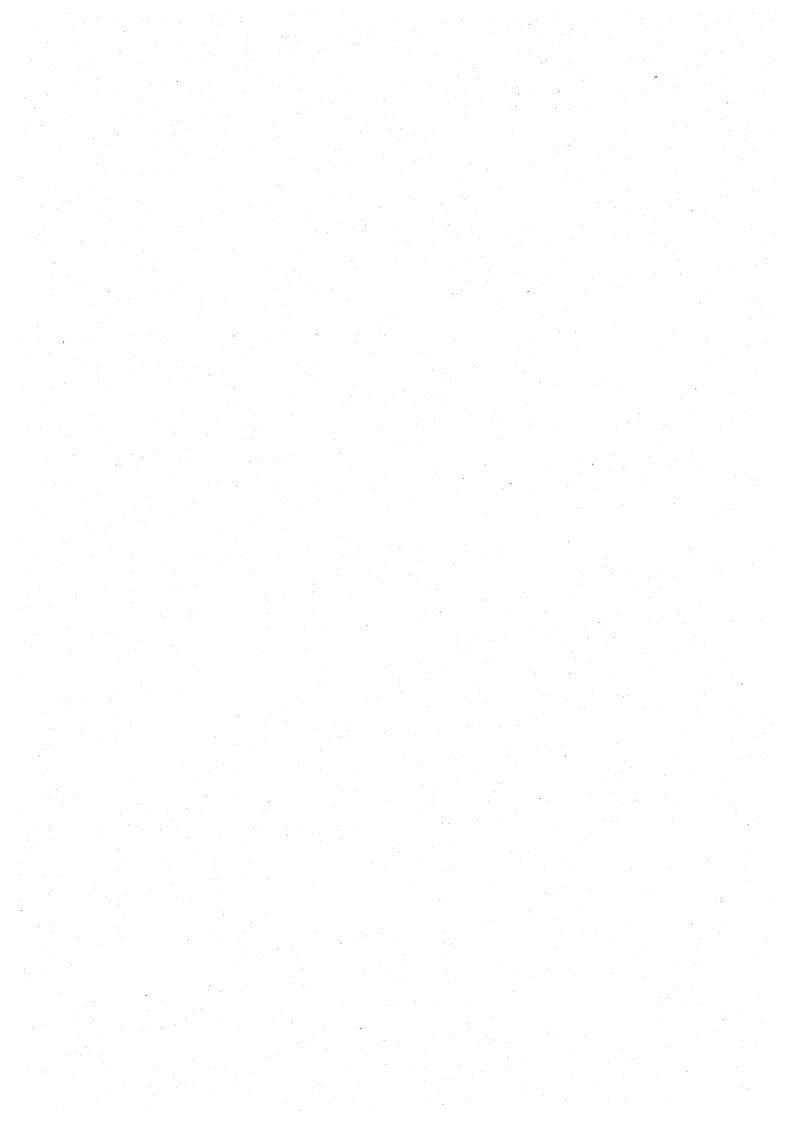
$$I_d = \frac{U_s / \sqrt{3}}{\sqrt{\chi^2 + R_t^2}} = \frac{20000 / \sqrt{3}}{\sqrt{25^2 + R_t^2}}$$

De lo que se deduce que :

$$V_p = \frac{2636 R_t}{\sqrt{25^2 + R_t^2}}$$

$$V'_{c} = \frac{5786 R_{t}}{\sqrt{25^2 + R_{t}^2}}$$

Así pues, queda demostrado que para una determinada geometría de electrodo, y unas características concretas de la red de alimentación de AT existe correlación de las tensiones de paso y contacto, con la resistencia de puesta a tierra.


Si el electrodo considerado se halla en un terreno de resistividad ρ = 200 $\Omega \cdot m$ la resistencia de puesta a tierra y las tensiones de paso y contacto exteriores serán :

$$R_{t} = 0.092 \rho = 18, 4 \Omega$$

 $V_{c}^{\dagger} = 1563 V$
 $V_{c}^{\dagger} = 3430 V$

PROCESO	DE	JUS	TIFICA	CION	DEL	ELECTR	ODO
DE PU	EST	AΑ	TIERRA	A SEL	ECCI	ONADO	

ANEXO 4

PROCESO DE JUSTIFICACION DEL ELECTRODO DE PUESTA A TIERRA SELECCIONADO

ANEXO 4.1

A 4 . 1 - 1

ANEXO 4.1

PROCESO DE JUSTIFICACION DEL ELECTRODO
DE PUESTA A TIERRA SELECCIONADO
(NEUTRO PUESTO A TIERRA)

PROCESO DE CALCULO Y JUSTIFICACION DEL SISTEMA DE PUESTA A TIERRA PARA CT CONECTADO A UNA RED DE A.T. DE TERCERA CATEGORIA CON EL NEUTRO PUESTO A TIERRA

ANEXO 4.1

A4.1.2

* Côdigo		
* Población		
1 DATOS DE PARTIDA		
1.1 Características iniciales		
* Tensión de servicio	U =	
* Puesta a tierra del neutro	R _n =	·
	_ x _n =	
* Duración de la falta		
<u>Desconexión inicial</u>		
Relé a tiempo independiente	t' =	
Relé a tiempo dependiente	<u> </u>	4,
	K' =	
Constantes del relé		
	n' =	
Intensidad de arranque	I'a =	
Reenganche en menos de 0,5 segundos	<u> </u>	
Relé a tiempo independiente	t" =	
Relé a tiempo dependiente		
	K" =	
Constantes del relé	n" =	
	L " - L	
Intensidad de arranque	I"a =	
* Nivel de aislamiento de las instalaciones de BT del CT	v _{bt} =	
* Red subterrânea de AT de suficiente conductibilidad		
<u></u> NO		
SI (ver justificación en apartado 7)		
 Superficie del circulo de igual área que la cubierta por la malla 	S _m =	
 Longitud total de los cables existentes en la malla con cubierta conductora 	L =	
- Longitud total de las picas verticales	Li •	

PROCESO	DE CALCULO	Y JUSTIFICACION	DEL SISTE	MA DE
PUESTA A	TIERRA PARA	CT CONECTADO A	UNA RED D	E A.T.
DE TERCEI	RA CATEGORIA	CON EL NEUTRO P	PUESTO A	TIERRA

ANEXO	4.1
--------------	-----

A4.1.3

1.2 Características del CT		
Conditions		•
En edificio		
Aislado		
Destinado a otros usos		· · · · ·
Dimensiones del local	a =	
Sobre apoyo		
Sobre 1 apoyo		
Sobre 2 apoyos		
2 CARACTERISTICAS DEL TERRENO		
* Resistividad del terreno	ρ -	
3 OBSERVACIONES		
	·	
A CALCINO		
<u>4 CALCULO</u> 4.1 Resistencia máxima de la puesta a tierra de las masas d	del CT (R _t) e intensidad de defect	:o (I
4.1 Resistencia máxima de la puesta a tierra de las masas d	del CT (R _t) e intensidad de defect	:o (I
4.1 Resistencia máxima de la puesta a tierra de las masas d I'a = Id·R+ ≤ Vh+ ; Id >		:o (I
4.1 Resistencia máxima de la puesta a tierra de las masas d $I'_{d} \cdot R_{t} \leq V_{bt} ; I_{d} > I''_{a} = I''_{a}$	del CT (R_t) e intensidad de defect I_d =	:o (I
4.1 Resistencia máxima de la puesta a tierra de las masas d $I'_{d} \cdot R_{t} \leq V_{bt} ; I_{d} > I''_{a} = I''_{a}$	I _d =	:o (I
4.1 Resistencia máxima de la puesta a tierra de las masas d I'a =		co (I
4.1 Resistencia máxima de la puesta a tierra de las masas d $I'_{a} = I_{d} \cdot R_{t} \leq V_{bt} ; I_{d} > I''_{a} = I_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R_{t})^{2} + X_{n}^{2}}}$	I _d =	
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt} ; I_d > I_a = I_d = \frac{U}{\sqrt{3}\sqrt{(R_n + R_t)^2 + X_n^2}}$ 4.2 Selección del electrodo tipo (de entre los incluidos en	I_d = R_t = R_t = R_t and R_t and R_t are R_t and R_t and R_t are R_t and R_t are R_t and R_t are R_t are R_t and R_t are R_t are R_t and R_t are R_t are R_t and R_t are R_t are R_t and R_t are R_t are R_t are R_t and R_t are R_t and R_t are R_t are R_t are R_t are R_t are R_t are R_t are R_t are R_t are R_t are	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt} \; ; I_d > \\ I_d = \frac{U}{\sqrt{3} \sqrt{(R_n + R_t)^2 + X_n^2}}$ 4.2 Selección del electrodo tipo (de entre los incluidos en "Método de cálculo y proyecto de instalaciones de puesto de instalaciones de puesto de selectron de la proyecto de instalaciones de puesto de selectron de la puesto de instalaciones de puesto de selectron de la puesto de instalaciones de puesto de selectron de la puesto del la puesto de la puesto de la puesto de la puesto de la puesto de la puesto de la puesto de la puesto de la puesto de la puesto	I _d = R _t = R _t = R _t a las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt}; I_d > I_a = I_d =$	I _d = R _t = R _t = R _t a las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I'_{d} = I_{d} \cdot R_{t} \leq V_{bt}; I_{d} > I''_{a} = I_{d} = I_$	I _d = R _t = R _t = R _t a las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d I'a =	I _d = R _t = R _t = R _t a las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt} \; ; \; I_d > \\ I_d = \frac{U}{\sqrt{3}\sqrt{(R_n+R_t)^2+X_n^2}}$ 4.2 Selección del electrodo tipo (de entre los incluidos er "Método de cálculo y proyecto de instalaciones de puesta a tierra del electrodo	I _d = R _t = n las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt}; I_d > I_a = I_d =$	I _d = R _t = R _t = R _t a las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt} \; ; \; I_d > \\ I_d = \frac{U}{\sqrt{3}\sqrt{(R_n+R_t)^2+X_n^2}}$ 4.2 Selección del electrodo tipo (de entre los incluidos er "Método de cálculo y proyecto de instalaciones de puesta a tierra del electrodo	I _d = R _t = n las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento
4.1 Resistencia máxima de la puesta a tierra de las masas d $I_d \cdot R_t \leq V_{bt} \; ; \; I_d > \\ I_d = \frac{U}{\sqrt{3}\sqrt{(R_n+R_t)^2+X_n^2}}$ 4.2 Selección del electrodo tipo (de entre los incluidos er "Método de cálculo y proyecto de instalaciones de puesta a tierra del electrodo	I _d = R _t = n las tablas del ANEXO 2 del docum ta a tierra para centros de transf	mento

PROCESO DE CALCULO Y JUSTIFICACION DEL SISTEMA DE PUESTA A TIERRA PARA CT CONECTADO A UNA RED DE A.T. DE TERCERA CATEGORIA CON EL NEUTRO PUESTO A TIERRA	A4.1.4 ANEXO 4.1
* Picas alineadas	
Si Separación entre picas	
No	
	· ·
* Sección del conductor de cobre desnudo	50 mm ²
* Profundidad del electrodo horizontal	
0,50 m	
0.80 m	
* Número de picas	* Longitud de las picas L _D (m)
0	2
2	1 4
4	8
igsqcut 6	
8	
 * Electrodo seleccionado (indicar código de la configuració 	in)
- Parámetros característicos del electrodo :	
	Ω
De la resistencia	$\kappa_{\mathbf{r}} = \underline{\qquad \qquad } \overline{\Omega \cdot \mathbf{m}}$
De la tensión de paso	$K_p = \frac{V}{(\Omega \cdot m)(A)}$
De la tensión de contacto exterior	$K_{c} = \frac{V}{(\Omega \cdot m)(A)}$
4.3 Medidas de seguridad adicionales para evitar tensiones de co	ntacto_
Dana que no anavencen describación de contrato	
Para que no aparezcan tensiones de contacto exteriores ni interi de seguridad :	ores, se adoptan las siguientes medidas
4.3.1 CT interior	
Las puertas y rejillas metálicas que dan al exterior o con masas conductoras susceptibles de quedar sometida	s a tensión debido a defectos o averías.
b En el piso del CT se instalará un mallazo cubierto por a la puesta a tierra de protección del CT.	una capa de hormigón de 10 cm conectado
c Empleo de pavimentos aislantes	
d Otras	
4.3.2 CT sobre apoyo	
a Se colocará un mallazo que sobresalga 1 m en todas las o que se conectará a la tierra de protección, cubriéndo cm de espesor	lirecciones respecto a la base del apoyo, lo luego con una capa de hormigón de 10
b Empleo de pavimentos aislantes	
c Otras	

- Valores de resistencia de puesta a tierra (R' $_t$), intensida (V' $_p$ y V' $_{p(acc)}$) del electrodo tipo seleccionado, para la r	resistividad del terreno medida
* Resistencia de puesta a tierra $(R'_t \le R_t)$	
$R'_t = K_r \cdot \rho = $	R' _t =
	• • • • • • • • • • • • • • • • • • •
* Intensidad de defecto	
$I'_d = \frac{U}{\sqrt{3}\sqrt{(R_n + R'_t)^2 + X_n^2}} = \frac{L}{1.73}\sqrt{\Gamma}$	
V 3 V (κ _n + κ' t) + λ _n 1,73 V]+[
	I'd =
* Tensión de paso en el exterior	<u> </u>
$V'_p = K_p \cdot \rho \cdot I'_d = x$	V'p =
у у г - u^	
* Tensión de paso en el acceso al CT	
V'p(acc) = V'c= K _c ·ρ·Ι' _d = x x	
P(400) C 0 /- 4	
* Tensión de defecto	V'p(acc)=
V'd = R't· I'd = x	V'd =
Duración total de la falta	
Desconexión inicial:	
Relé a tiempo independiente	t' =
Relé a tiempo dependiente :	
Constantes del relé	K' =
	n' =
Intensidad de arranque	I'a =
K '.	
t' =	t' -

PUESTA A TIERRA PAI	LO Y JUSTIFICACION D RA CT CONECTADO A L RIA CON EL <u>NEUTRO P</u> U	INA RED DE A.T.	ANEXO 4.1	A 4.1-6
Reen	ganche a menos de 0,5 segund	dos		
	Relé a tiempo independiente		t" =	s
	Relé a tiempo dependiente :		- "	
			N" =	
Inter	nsidad de arranque		I"a =	A
t"			t" =	s
	- 1 - 1	- 1		
	Duración total	t = t1 + t"	t =	s
4 6 Sonanación	antro los sistemas de nuest	o o tionno do mustacaiso (maso	a) da aam.tata (a	4 4- 1- 4-)
4.0 Sepai ac ion	entre los sistemas de puest	a a tierra de protección (masa	s) y de servicio (i	leutro de b.t)
Siste	ma de puesta a tierra único	(V' _d ≤ 1000 V)		
Siste	mas de puesta a tierra sepa	rados e independientes		
* Di	stancia minima de separació	on (Tabla 6 página 22) :		
	0.11	×		
D =	ρ· I' _d -	6283	D ≥	m
	en en en en en en en en en en en en en e			
5 VALORES ADMI	SIBLES Tablas 1 (pági	na 8) y 3 (página 10)		
		_		
	Para t =	s (se	egún apartado 4.5 d	e este ANEXO)
	0,9 ≥ t > 0,1	K = 72	n = 1	
	3 ≥ t > 0,9	K = 78,5	n = 0,18	
	5 ≥ t > 3	K = 64 V	<u></u>	
	t > 5	K = 50 V		

* Tensión de paso en el exterior

$$V_p = \frac{10 \text{ K}}{t^n} \left(1 + \frac{6 \rho}{1000}\right) = 10 \cdot \boxed{ } \boxed{ 1 + \frac{6 \cdot \boxed{ }}{1000} }$$

v_p - | v

Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} (1 + \frac{3 \rho + 3 \rho'}{1000}) = 10 \cdot \boxed{1 + \frac{3 \cdot \boxed{1 + 3 \cdot \boxed{1000}}}{1000}}$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el
interior, va que éstas serán prácticamente coro

Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

	Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será p	reciso
لـــا	calcular la tensión de contacto exterior, ya que esta será prácticamente cero.	

Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible	
Tensión de paso en el exterior	v' _p - v	5	v _p - v	
Tensión de paso en el acceso al CT	Vp(acc) - V	≤	V _{p(acc)} - V	

6.4. - Tensión e intensidad de defecto

	Concepto	Valor calculado	Condición	Valor admisible
	Tensión de defecto	v' _d = v	<	v _{bt} - v
-	Intensidad de defecto	I'd - A	>	I'a = A I"a = A

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

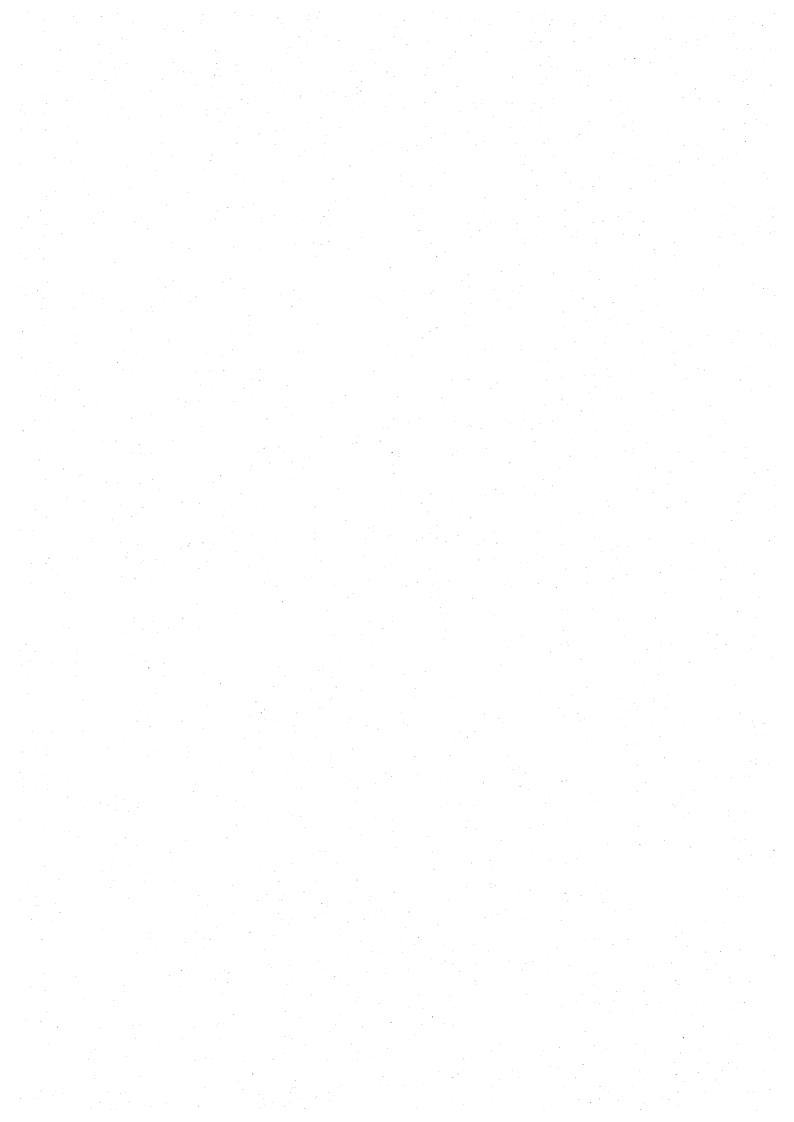
$$r = \sqrt{\frac{S_m}{\Pi}} = \sqrt{\frac{3.14}{3.14}}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{}{4} + \frac{}{} + \frac{}{}$$

$$R'_{m} = \Omega$$

* Intensidad de defecto

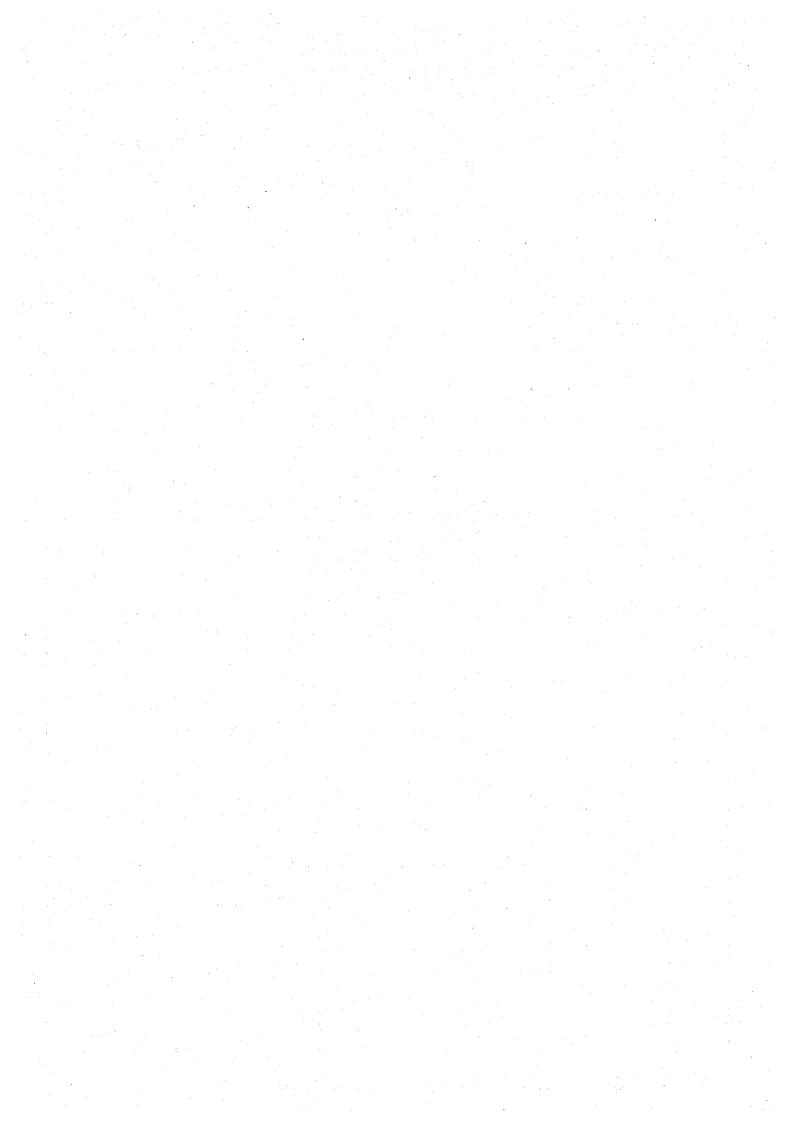

$$I'_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + x_{n}^{2}}} = \frac{U}{\sqrt{3} \sqrt{\left[+ \frac{1}{2} +$$

* Tensión de defecto

$$V'_d = R'_m \cdot I'_d =$$

$$V'_d =$$

$$V'_d \leq 1000 V$$



ANEXO 4.2

A4.2-1

ANEXO 4.2

PROCESO DE JUSTIFICACION DEL ELECTRODO DE PUESTA A TIERRA SELECCIONADO (NEUTRO AISLADO)

PROCESO DE CALCULO Y JUSTIFICACION DEL SISTEMA DE PUESTA A TIERRA PARA CT CONECTADO A UNA RED DE A.T. DE TERCERA CATEGORIA CON EL NEUTRO AISLADO

ANEXO 4.2

A 4 . 2 - 2

O REFERENC		•		
* Codigo				
* Poblac	ión			
1 DATOS DE	<u>PARTIDA</u>			
1.1 Caracte	erísticas iniciales			
* Tens	ón de servicio	U] ,
* Red a				
	- Longitud total	L _a	-	
* Red s	- Capacidad ubterránea	Ca	= 0	,006
incu s	- Longitud total	L _c		. 1
	- Capacidad	C _C		0,25
* Dura	ción de la falta	℃		0,23
Dui a	cion de la laita			
	<u>Desconexión inicial</u>			
	Relé a tiempo independiente	t'	_	
			<u> </u>	
• • •	Relé a tiempo dependiente			
	Constantes del relé	_ K'	-	
		_ n'	-	
	Intensidad de arranque	I'a	= [
	Reenganche en menos de 0,5 segundos		<u> </u>	
	Relé a tiempo independiente	t" .	-	
	Relé a tiempo dependiente			
	Constantes del relé	 K "	=	
	constantes del Tele	- n"	-	
	T-4	. L		
	Intensidad de arranque	. " a "	-	
				· .
* Nivel	de aislamiento de las instalaciones de BT del CT	v _{bt}		
* Red s	ubterránea de AT de suficiente conductibilidad			
, , , , , , , , , , , , , , , , , , ,				
	NO			
	SI (ver justificación en apartado 7)			
	 Superficie del círculo de igual área que la cubierta por la malla 	S _m	=	ſ
	- Longitud total de los cables existentes en la malla con cubierta conductora	L	•	r
	- Longitud total de las picas verticales incluidas en la malla	L	_	

PROCESO	DE CALCULO	Y JUSTIFICACION	DEL SISTEMA DE
PUESTA A	TIERRA PARA	CT CONECTADO A	UNA RED DE A.T.
DE TERCEI	RA CATEGORIA	CON EL NEUTRO	AISLADO

ANEXO 4.2

١	A	2	_	2	

RCERA CATEGORIA CON EL NEUTRO AISLADO	
1.2 Características del CT	
En edificio	
Aislado	
Destinado a otros usos	_
Dimensiones del local	a =
Sobre apoyo	b =
Sobre 1 apoyo	
Sobre 2 apoyos	
A TOTAL CONTRACTOR OF THE STATE	
2 CARACTERISTICAS DEL TERRENO	
* Resistividad del terreno	
	ρΩ
3 OBSERVACIONES	
	n de la composition br>La composition de la
4 CALCULO	
4.1 Resistencia máxima de la puesta a tierra de las masas del	CT (R ₊) e intensidad de defecto (I)
as in prosent a civilla de las masas del	(14)
I _d R _t ≤ V _{bt}	I _{d.} -
	'd - [
$I_{d} = \frac{\sqrt{3} \ U (\omega \ C_{a} \ L_{a} + \omega \ C_{c} \ L_{c})}{\sqrt{1 + (\omega \ C_{a} \ L_{a} + \omega \ C_{c} \ L_{c})^{2} (3R_{t})^{2}}}$	R ₊ = 0
$\sqrt{1 + (\omega C_a L_a + \omega C_c L_c)^2 (3R_t)^2}$	R _t =
4.2 Selección del electrodo tipo (de entre los incluidos en la	as tablas del ANFYO 2 del documento IIN
"Método de cálculo y proyecto de instalaciones de puesta	a tierra para centros de transformació
 * "Valor unitario" máximo de la resistencia de puesta 	
a tierra del electrodo	
D .	
$\kappa_r \leq \frac{R_t}{\rho} = \frac{\Gamma}{\Gamma}$	$K_r \leq \overline{Q}$
ρ Γ	<u> </u>
* Dimensiones horizontales del electrodo	a' = n
Dimensiones noi izontales del electrodo	b' =
	1 2 - 1
	- u - 1

PUESTA A TIE	E CALCULO Y JUSTIFICACION DEL SISTEMA DE ERRA PARA CT CONECTADO A UNA RED DE A.T. CATEGORIA CON EL <u>NEUTRO AISLADO</u>	A4.2-4 ANEXO 4.2
*	* Picas alineadas	
	Si Separación entre picas	m
	No	
*	* Sección del conductor de cobre desnudo	50 mm ²
*	* Profundidad del electrodo horizontal	
	0,50 m	
	0,80 m	
*	* Número de picas	* Longitud de las picas L _p (m)
i Par	o	2
	☐ 3	
	3	
		∐ 8
	<u> </u>	
	8	
*	* Electrodo seleccionado (indicar código de la configuració	ón)
	- Parâmetros característicos del electrodo :	
	De la resistencia	$\kappa_{r} = \frac{\Omega}{\Omega \cdot m}$
	De la tensión de paso	$K_p = \frac{V}{(\Omega - m)(A)}$
	De la tensión de contacto exterior	$K_{c} = \frac{V}{(\Omega \cdot m)(A)}$
4.3 Me	edidas de seguridad adicionales para evitar tensiones de co	
Para de segur	a que no aparezcan tensiones de contacto exteriores ni inter ridad :	iores, se adoptan las siguientes medidas
4.3.1	CT interior	
a	Las puertas y rejillas metálicas que dan al exterior con masas conductoras susceptibles de quedar sometida	del centro no tendrán contacto eléctrico as a tensión debido a defectos o averías.
b ,	En el piso del CT se instalará un mallazo cubierto por a la puesta a tierra de protección del CT.	r una capa de hormigón de 10 cm conectado
c	Empleo de pavimentos aislantes	
	Otras	
4.3.2	CT sobre apoyo	
a	Se colocará un mallazo que sobresalga 1 m en todas las	direcciones respecto a la base del apoyo.
	que se conectará a la tierra de protección, cubriéndo cm de espesor	olo luego con una capa de hormigón de 10
b	Empleo de pavimentos aislantes	
C	Otras Otras	

	$V_p \times V_{p(acc)}$ del electrodo tipo seleccionado, para la resistividad del terreno medida (ρ)
*	Resistencia de puesta a tierra $(R'_t \le R_t)$
	$R'_{t} = K_{r} \cdot \rho = $ X $R'_{t} = $
*	Intensidad de defecto
= .	$\frac{\sqrt{3} \ \ \text{U} \ (\ \omega \ \ \text{C}_{\text{a}} \ \text{L}_{\text{a}} + \omega \ \ \text{C}_{\text{c}} \ \text{L}_{\text{c}})}{\sqrt{1 + \left(\ \omega \ \ \text{C}_{\text{a}} \ \text{L}_{\text{a}} + \omega \ \text{C}_{\text{c}} \ \text{L}_{\text{c}}\right)^2 \ \ (\text{R'}_{\text{t}})^2}} = \frac{\sqrt{3 \cdot 10^{-6} \ \ (\text{1'9 L}_{\text{a}} + 78'5 \ \text{L}_{\text{c}}) \ \text{U}}}{\sqrt{1 + \left[10^{-6} \ \ (\text{1'9 L}_{\text{a}} + 78'5 \cdot \text{L}_{\text{c}})\right]^2 \cdot 9 \cdot (\text{R'}_{\text{t}})^2}}}$
`	
	$\sqrt{3} \cdot 10^{-6}$ 1'9 · + 78'5 ·]
.=	7
	$\sqrt{1 + \left[10^{-6} (1'9 \cdot \right] + 78'5 \cdot \left]} 2 \cdot 9 \cdot \left[$
	I'd =
*	Tensión de paso en el exterior
	$V'_p = K_p \cdot \rho \cdot I'_d = $ X $X'_p = $
. *	Tensión de paso en el acceso al CT
	$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} = $
. i ·	V'p(acc)=
	V' _d = R' _t ·I' _d =
5 I	Duración total de la falta
	Desconexión inicial:
	Relé a tiempo independiente t' =
	Relé a tiempo dependiente : K' =
	Constantes del relé n' =
	Intensidad de arranque
1.	t' = K'
	I'd n'

PROCESO DE CALC PUESTA A TIERRA F DE TERCERA CATEG	ARA CT CON	ECTADO A	UNA RED DE A.T.	
DE TENDENA GATEG	- IONIA CON EL	NEOTHO /	RISLADO	
Re	enganche a meno:	s de 0,5 segur	ndos	

AN	EXO	4.2

		A 4	. 2 - 6
XO 4.2			

Reenganche a menos de 0,5 segundos				
Relé a tiempo independiente		t" =		s
Relé a tiempo dependiente :				1
Constantes del relé ——		K" =	<u> </u>	
		n" =		
Intensidad de arranque		I"a =		A
t" = K" =		_ t" =		s
I"d		· · · · · · · · · · · · · · · · · · ·		
1				
Duración total t = t' +	÷n .	· · · - F		s

4.6 Separación entre	los sistemas de	puesta a tierra de	protección (masas) v de servicio	(neutro de b.t)

- Sistema de puesta a tierra único ($V'_d \le 1000 V$)
- Sistemas de puesta a tierra separados e independientes
 - * Distancia mínima de separación (Tabla 6 página 22) :

Para (según apartado 4.5 de este ANEXO)

$0.9 \ge t > 0.1$	K = 72	n = 1
3 ≥ t > 0,9	K = 78,5	n = 0,18
5 ≥ t > 3	$\frac{K}{t^n} = 64 \text{ V}$	<u></u>
t > 5	K = 50 V	

* Tensión de paso en el exterior

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000}\right) = 10 \cdot \boxed{1 + \frac{6 \cdot \boxed{1000}}{1000}}$$

* Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \boxed{ 1 + \frac{3 \cdot \boxed{ + 3 \cdot \boxed{ }}}{1000} }$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible
Tensión de paso en el exterior	v' _p v	<u> </u>	v _p - v
Tensión de paso en el acceso al CT	V _p (acc) - V	<u> </u>	V _{p(acc)} = V

6.4.- Tensión de defecto

Concepto	Valor calculado	Condición	Valor admisible	
Tensión de defecto	v' _d =	≤	V _{bt} = V	

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

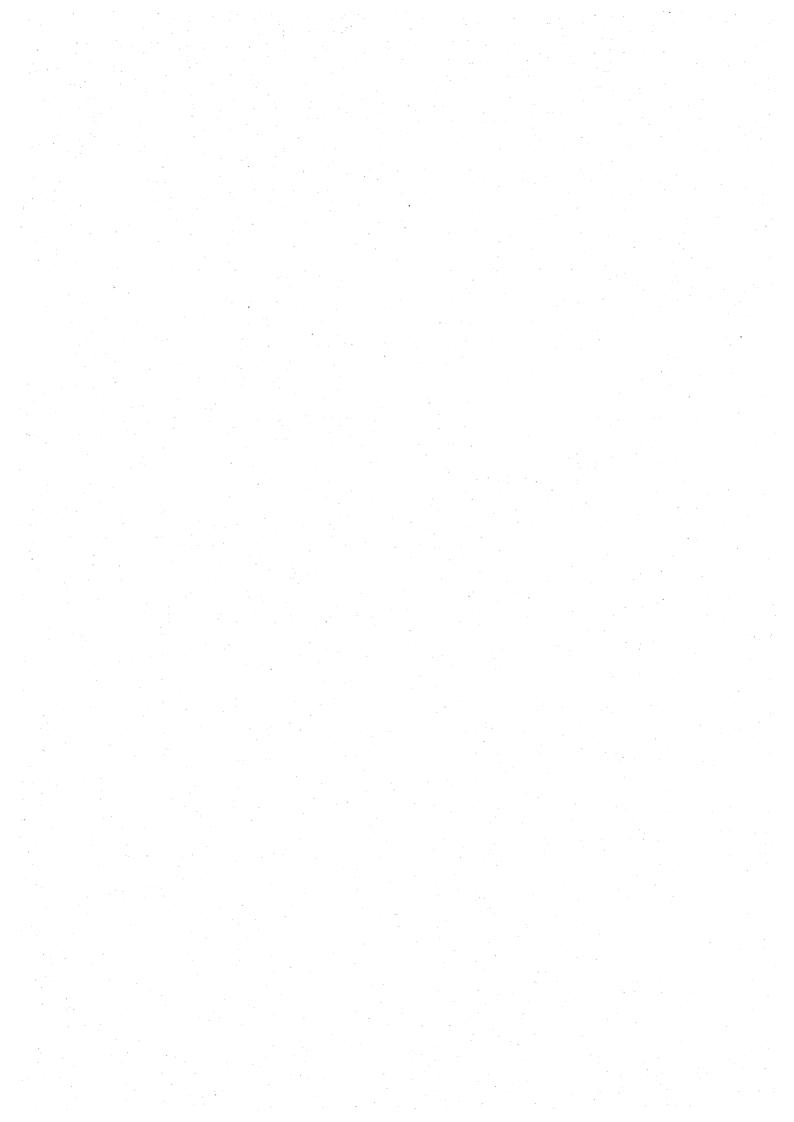
$$r = \sqrt{\frac{s_m}{\Pi}} = \sqrt{\frac{3.14}{3.14}}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{1}{4 \cdot l} + \frac{l}{l}$$

$$R'_m = \Omega$$

* Intensidad de defecto


$$I'_{d} = \frac{\sqrt{3} \quad \text{U} \left(\omega \quad \text{C}_{a} \; \text{L}_{a} + \omega \quad \text{C}_{c} \; \text{L}_{c} \right)}{\sqrt{1 + \left(\omega \quad \text{C}_{a} \; \text{L}_{a} + \omega \quad \text{C}_{c} \; \text{L}_{c} \right)^{2} \left(3R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \cdot \left(1'9 \; \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \; \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \left[1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \left[1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \left[1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \cdot \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right)^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \cdot \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right)^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \cdot \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right)^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \cdot \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right)^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}$$

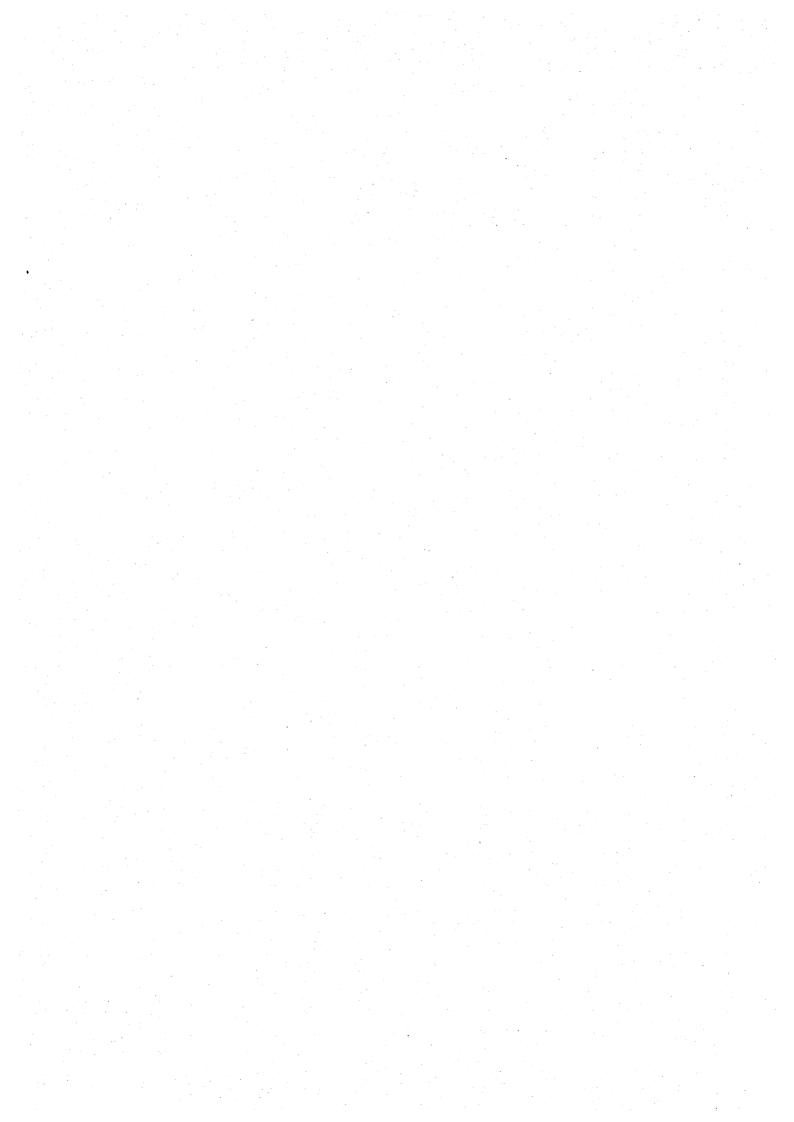
* Tensión de defecto

$$V'_{d} = K'_{m} \cdot I'_{d} =$$

$$V'_{d} \leq 1000 V$$

$$V'_{d} = \begin{bmatrix} V'_{d} \leq 1000 V \end{bmatrix}$$

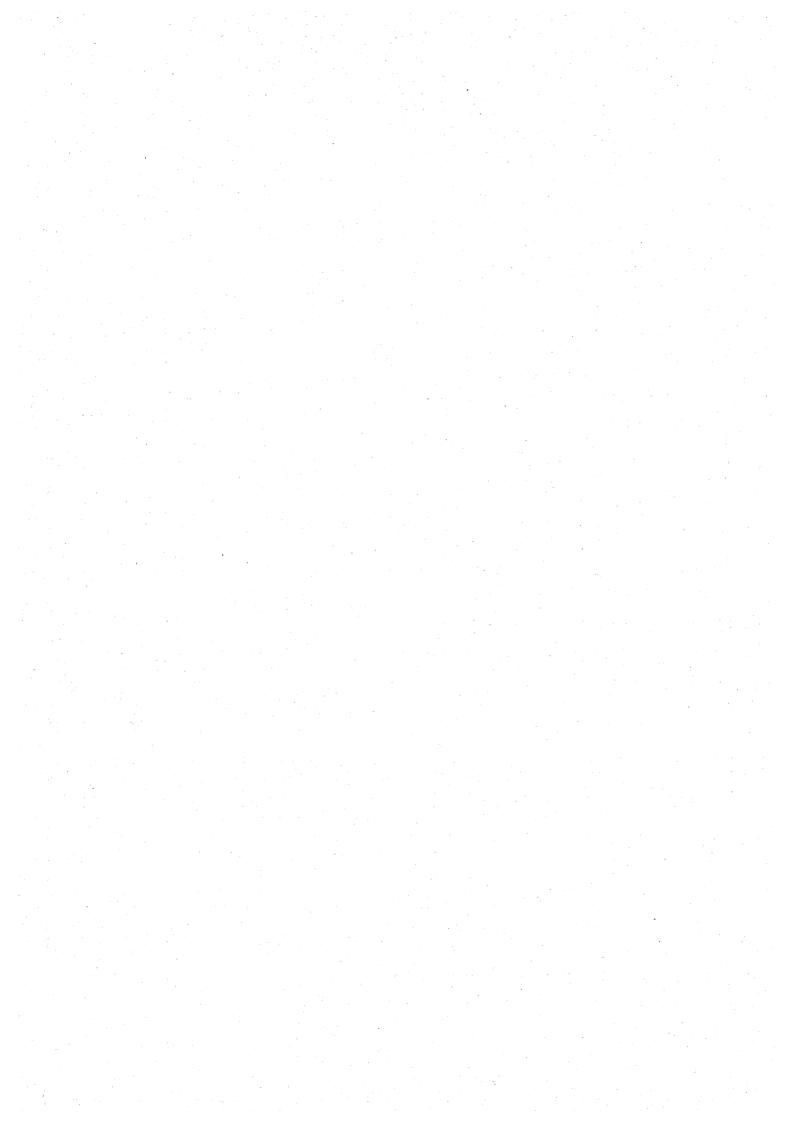
ANEXO 5


EJEMPLOS DE APLICACION

INDICE GENERAL

EJEMPLOS, VARIANTES CONSIDERADAS

- Neutro red AT a tierra * Mediante resistencia * Mediante inductancia	x	x		x	x
- Neutro red AT aislado			x		
- Tensión servicio AT * 20.000 V * 25.000 V	x	x	×	x	x
- Reconexión antes de 0,5 seg * Si * No	x	x	x	×	x
- Protección origen línea * Relé a tiempo dependiente * Relé a tiempo independiente	x	x	x	×	x
 Nivel de aislamiento bt del CT * 6.000 V * 8.000 V 	x	x	x	×	×
 Red subterránea de suficiente conductibilidad 		x			
- Tipo de CT * En edificio aislado * En interior de otro destinado a otros usos * Sobre apoyo	x	x	x	x	x
- Resistividad terreno * 100 Ohmios * 200 Ohmios * 250 Ohmios * 300 Ohmios * 350 Ohmios	X	x	x	x	×
EJEMPLO NUMERO	1	2	3	4	5
PAGINA	1	9	17	25	33


A 5 - 1

ANEXO 5

EJEMPLO 1 (Neutro puesto a tierra)

EJEMPLO 1

(Neutro puesto a tierra)

EJEMPLO 1

(Neutro puesto a tierra)	ANEXU 5	
O REFERENCIA DEL CT		
* Código		•
* Población		
1 DATOS DE PARTIDA		
1.1 Características iniciales		
* Tensión de servicio	U =	20000 V
	R _n =	30 Ω
* Puesta a tierra del neutro		
	_ X _n =	Ω
* Duración de la falta		
X <u>Desconexión inicial</u>		
X Relé a tiempo independiente	t' =	0,5 s
Relé a tiempo dependiente		
Constantes del relé	K' =	
	n' =	
Intensidad de arranque	I'a =	50 A
Reenganche en menos de 0,5 segundos		
Relé a tiempo independiente	t" =	s
Relé a tiempo dependiente	• 	
Constantes del relé	K" =	
	n" =	
Intensidad de arranque	I"a =	
institution and the arrange	' a -	ΑΑ
* Nivel de aislamiento de las instalaciones de BT del CT	v _{bt} -	8000 V
* Red subterrânea de AT de suficiente conductibilidad		
X NO		
SI (ver justificación en apartado 7)		
- Superficie del círculo de igual área que la cubierta por la malla	s _m =	m ²
- Longitud total de los cables existentes en la malla con cubierta conductora	L -	m

- Longitud total de las picas verticales incluidas en la malla

	E	JE	M	PL	0	1	
(N	leuti	o p	ues	sto	a t	tien	ra

1.2.	C	ara	cter	isticas	de 1	CT

	En		-	
) v (- 42		- 2 -
1 / 1		cu i		

☐ Ais lado

x Destinado a otros usos

Dimensiones del local

	1	· · · · · · · · · · · · · · · · · · ·	
а	-	5	m

Sobre apoyo

Sobre 1 apoyo

Sobre 2 apoyos

2.- CARACTERISTICAS DEL TERRENO

* Resistividad del terreno

3.- OBSERVACIONES

La puesta a tierra constará de un electrodo horizontal, exterior al centro, al que se podrán añadir, en caso necesario, picas verticales, y que estará situado frente al acceso al CT y paralelo a la fachada.

Se dispondrá encima del electrodo pavimento de hormigón y baldosas.

4.- CALCULO

4.1.- Resistencia máxima de la puesta a tierra de las masas del CT (R_t) e intensidad de defecto (I_d)

$$I_{d} \cdot R_{t} \leq V_{bt} ; I_{d} > I'_{a} = \boxed{ 50 }$$

$$I_{d} = \boxed{ U }$$

$$I_{d} = \boxed{ \sqrt{3} \sqrt{(R_{n} + R_{t})^{2} + X_{n}^{2}} }$$

$$I_{d} = \boxed{ 67,7 } \Omega$$

- 4.2.- Selección del electrodo tipo (de entre los incluidos en las tablas del ANEXO 2 del documento UNESA "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación")
 - "Valor unitario" máximo de la resistencia de puesta a tierra del electrodo

$$K_r \leq \frac{R_t}{\rho} = \frac{67.7}{100}$$

$$K_r \leq \frac{\Omega}{\Omega \cdot m}$$

* Dimensiones horizontales del electrodo

Α	5	-	4

ANEXO 5

LU	TIAIL F	. C	
(Neutro	puesto	a tierra	1)

	Picas alineadas					
	X Si	Separación entre pic	as		3	m -
	No					
*	Sección del conduc	tor de cobre desnudo			50	mm ²
* *	Profundidad del el	ectrodo horizontal				
	X 0,50 m					
	0.80 m					
*	Número de picas		* (ongitud de	las picas L	_p (m)
	0			X 2		
	X 2					
			· [6		
			. L			
	4 		l	8		•
	6					
	8					
*	Electrodo seleccion	nado (indicar código de la	configuración)		5 / 22	
	- Parámetros caraci	terísticos del electrodo :		L		
	De la resistencia	a	k	(r =	0,201	$\frac{\Omega}{\Omega \cdot m}$
	De la tensión de	paso		(p =	0,0392	$\frac{V}{(\Omega \cdot m)(A)}$
	De la tensión de	contacto exterior	k	c =		$\frac{V}{(\Omega \cdot m)(A)}$
4.3 Me	lidas de seguridad a	dicionales para evitar tens	ionos do contra	+0		777 m / (11)
Para de segur	que no aparezcan ten dad :	siones de contacto exterior	res ni interiore:	s, se adopta	n las siguie	entes medidas
4.3.1	CT interior					
. a	X Las puertas y i	rejillas metálicas que dan a uctoras susceptibles de qued	al exterior del d dar sometidas a	centro no te tensión deb	ndrán contac ido a defecto	cto eléctrico os o averías.
b	X En el piso del a la puesta a	CT se instalară un mallazo tierra de protección del C	cubierto por una T.	capa de hoi	rmigón de 10	cm conectado
С	Empleo de pavi	mentos aislantes				
ď	Otras					
4.3.2	CT sobre apoyo					
a	Se colocará un que se conectar cm de espesor	mallazo que sobresalga 1 m e rá a la tierra de protecció	n todas las dire n, cubriéndolo l	cciones resp luego con un	ecto a la ba a capa de ho	se del apoyo, ormigón de 10
b	Empleo de pavi	mentos aislantes				•
C.	Otras					

EJEMPLO 1 (Neutro puesto a tierra)

4.4 Valores de resistencia de puesta a tierra (R' _t),	
(V'p y V'p(acc)) del electrodo tipo seleccionado,	, para la resistividad del terreno medida ($ ho$)

4	D ! - 4 ! -	٠.		_	A !	/nı	_	n	١
*	Resistencia	ae	puesta	a	tierra	(K.+	≤	K+)

$$R'_t = K_r \cdot \rho =$$
 0.201 \times 100

$$R'_{+} = \begin{bmatrix} 20.1 & \Omega \end{bmatrix}$$

$$I'_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R'_{t})^{2} + X_{n}^{2}}} = \frac{20000}{1.73\sqrt{30} + 20.1}^{2}$$

* Tensión de paso en el exterior

$$V_p = K_p \cdot \rho \cdot I_d = \begin{bmatrix} 0.0392 \\ x \end{bmatrix} \times \begin{bmatrix} 100 \\ x \end{bmatrix} \times \begin{bmatrix} 230.7 \\ \end{bmatrix}$$

* Tensión de paso en el acceso al CT

$$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} =$$
 x

* Tensión de defecto

$$V'_{d} = R'_{t} \cdot I'_{d} = \begin{bmatrix} 20,1 \\ \end{bmatrix} \times \begin{bmatrix} 230,7 \\ \end{bmatrix}$$

4.5.- Duración total de la falta

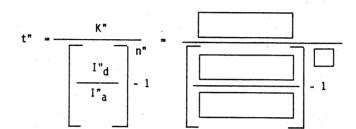
X Desconexión inicial:

X Relé a tiempo independiente

Relé a tiempo dependiente :

Constantes del relé

Intensidad de arranque


$$t' = \frac{K'}{\begin{bmatrix} I'_d \\ \hline I'_a \end{bmatrix} - 1} = \frac{\begin{bmatrix} I'_d \\ \hline \end{bmatrix} - 1}{\begin{bmatrix} I'_d \\ \hline \end{bmatrix} - 1}$$

EJ	EMPL	0	1
(Neutro	puesto	а	tierra)

ANEXO 5

1	1				
L	Reenganche	a	menos	de 0,5	segundos

	Dolá	2	tiomno	independien	+~
1 1	Ve le	α	riempo	maepena ren	ιe

Duración total
$$t = t' + t"$$

4.6.- Separación entre los sistemas de puesta a tierra de protección (masas) y de servicio (neutro de b.t)

- Sistema de puesta a tierra único ($V'_d = R'_t \cdot I'_d \le 1000 V$)
- X Sistemas de puesta a tierra separados e independientes
 - * Distancia mínima de separación (Tabla 6 página 22):

$$D = \frac{\rho \cdot I'_{d}}{2000 \cdot \Pi} = \frac{100 \times 230.7}{6283}$$

5.- VALORES ADMISIBLES

Para t = 0,5

(según apartado 4.5 de este ANEXO)

X	$0.9 \ge t > 0.1$	K = 72	n = 1
	3 ≥ t > 0,9	K = 78.5	n = 0,18
	5 ≥ t > 3	K = 64 V	
	t > 5	- K = 50 V	

EJEMPLO 1 (Neutro puesto a tierra)

* Tensión de paso en el exterior

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000}\right) = 10 \cdot \boxed{\frac{72}{0.5^{1}}} \boxed{1 + \frac{6 \cdot \boxed{100}}{1000}}$$

$$V_{p} = \boxed{2304}$$

* Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \boxed{\frac{72}{0.5^{1}}} \boxed{1 + \frac{3 \cdot \boxed{100} + 3 \cdot \boxed{3000}}{1000}}$$

$$V_{p(acc)} = \boxed{14832}$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible
Tensión de paso en el exterior	V'p - 904 V	<u> </u>	v _p = 2304 V
Tensión de paso en el acceso al CT	V _p (acc) V	_≤	V _{p(acc)} = 14832 V

Ω

EJEMPLO 1 (Neutro puesto a tierra)

6.4.- Tensión e intensidad de defecto

Concepto	Valor calculado	Condición	Valor admisible		
Tensión de defecto	V' _d = 4637 V	<	V _{bt} = 8000 V		
Intensidad de defecto	I'd = 230,7 A	>	I'a = 50 A I"a = A		

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

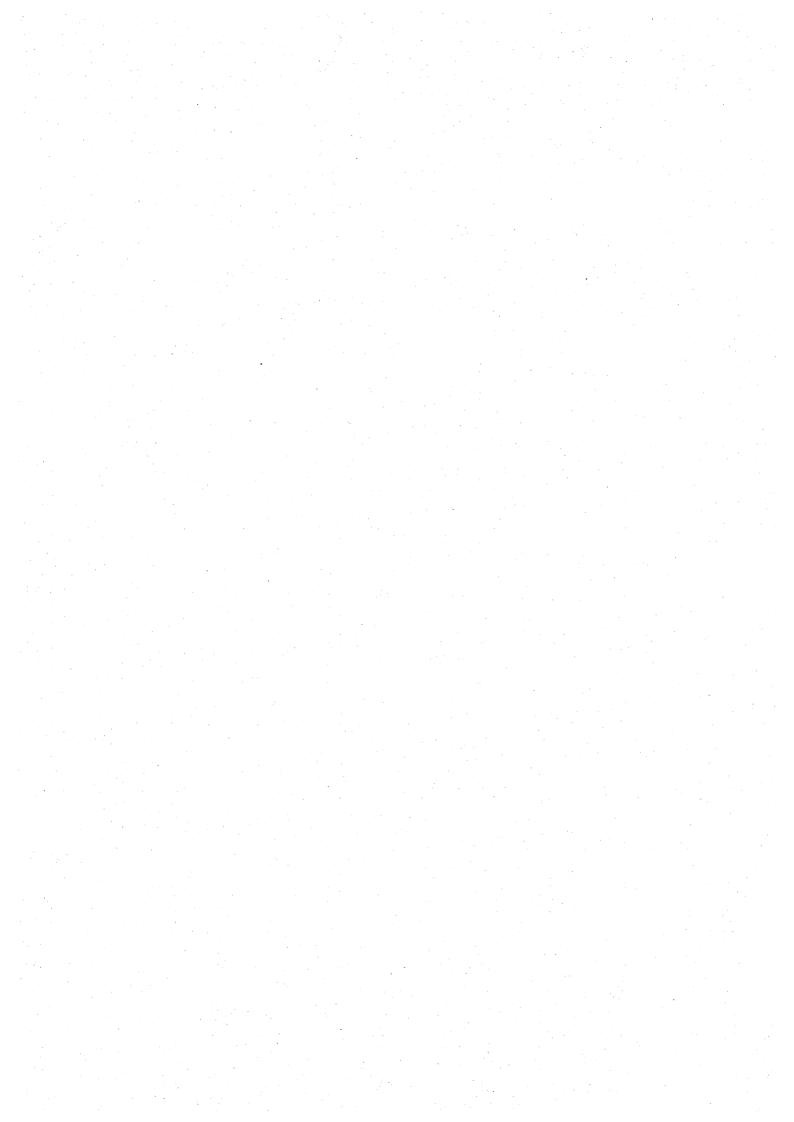
$$r = \sqrt{\frac{S_m}{\Pi}} = \sqrt{\frac{3,14}{3}}$$

$$r = \boxed{m}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{1}{4} + \frac{1}{2}

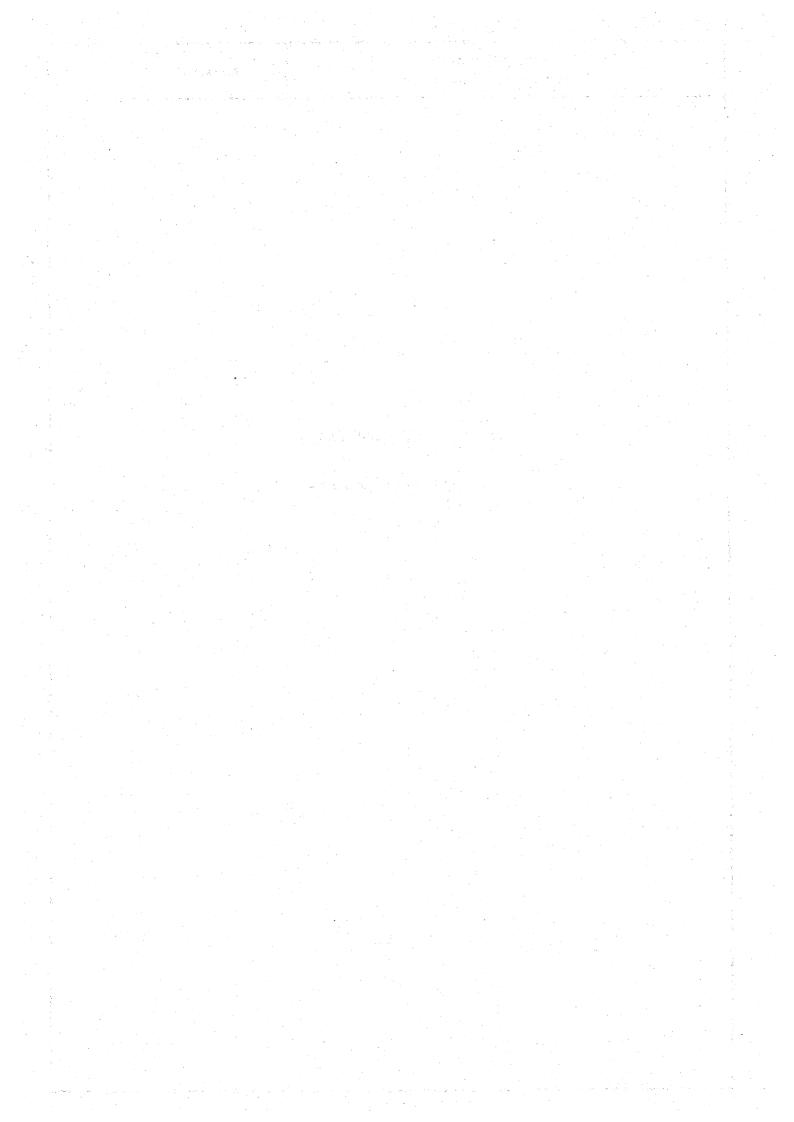
* Intensidad de defecto


$$I'_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + x_{n}^{2}}} = \frac{U}{\sqrt{3} \sqrt{[]_{d} + []_{d}^{2} + []_{d}^{2}}}$$

$$I'_{d} = \frac{A}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + x_{n}^{2}}}$$

* Tensión de defecto

$$V'_d = R'_m \cdot I'_d =$$


$$V'_d = \begin{bmatrix} V'_d = & & V'_d \le 1000 & V \end{bmatrix}$$

EJEMPLO 2 (Neutro puesto a tierra)

EJEMPLO 2

(Neutro puesto a tierra)

EJEMPLO 2

(Neutro puesto a tierra)

0 REFERENCIA DEL CT				
* Cốd igo	. '			,
* Población				
1 DATOS DE PARTIDA	A			
1.1 Características iniciales				
* Tensión de servicio	ι) 	25000	v
* Puesta a tierra del neutro	☐ F	? _n =	0	Ω
		(_n =	25	Ω
* Duración de la falta				
X <u>Desconexión inicial</u>				
X Relé a tiempo independiente	. 1	t' =	0,5	S
Relé a tiempo dependiente		(¹ =		7
Constantes del relé		n' =		
Intensidad de arranque	L	I'a =		
Reenganche en menos de 0,5 segundos				
Relé a tiempo independiente		t" =		s
Relé a tiempo dependiente				
Constantes del relé		(" =		
	L	n" =		
Intensidad de arranque		I"a =		A
* Nivel de aislamiento de las instalaciones de BT del CT	٧	bt =	8000	v
* Red subterrânea de AT de suficiente conductibilidad				
☐ NO				
X SI (ver justificación en apartado 7)		+ .** 		
 Superficie del circulo de igual área que la cubierta por la malla 		s _m -	2000000	m ²
 Longitud total de los cables existentes en la malla con cubierta conductora 		L -	750	m
 Longitud total de las picas verticales incluidas en la malla 	·		80	
The second secon			L	

	EJ	EM	PL	0	2
(Ne	ıtro	pue	sto	a ti	ierra)

	ANEXO !

1.2	Caract	erísticas	s del CT

X	En	edi	fi	icio
---	----	-----	----	------

Aislado

Destinado a otros usos

Dimensiones del local

a	=		4		n
		L	 	 	

Sobre apoyo

Sobre 1 apoyo

Sobre 2 apoyos

2.- CARACTERISTICAS DEL TERRENO

* Resistividad del terreno

$$\rho$$
 = 200 $\Omega \cdot m$

3.- OBSERVACIONES

- Población donde existen 20 centros interconectados mediante una red subterránea de A.T

- Se dispondrá una tierra única

4.- CALCULO

4.1.- Resistencia máxima de la puesta a tierra de las masas del CT (R_t) e intensidad de defecto (I_d)

$$I_{d} R_{t} \leq V_{bt} ; I_{d} > I'_{a} = I_{d}

4.2.- Selección del electrodo tipo (de entre los incluidos en las tablas del ANEXO 2 del documento UNESA "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación")

"Valor unitario" máximo de la resistencia de puesta a tierra del electrodo

$$\kappa_{r} \leq \frac{R_{t}}{\rho} = \frac{ }{ }$$

$$K_r \leq \frac{\Omega}{\Omega \cdot m}$$

Dimensiones horizontales del electrodo

-	a'	-	m

EJEMPLO 2	A5-12
(Neutro puesto a tierra)	ANEXO 5
Picas alineadas	
Si Separación entre picas	m
No	
* Sección del conductor de cobre desnudo	50 mm ²
 Profundidad del electrodo horizontal 	
0,50 m	
0,80 m	
* Número de picas	* Longitud de las picas L_p (m)
□ 0	2
3	☐ 6
4	8
8	
* Electrodo seleccionado (indicar código de la configurad	ción)
- Parámetros característicos del electrodo :	
De la resistencia	$\kappa_r = \frac{\Omega}{\Omega \cdot m}$
	~r Ω·m
De la tensión de paso	$K_p = \frac{(\Omega \cdot m)(A)}{(A)}$
De la tensión de contacto exterior	$K_{c} = \frac{V}{(\Omega \cdot m)(A)}$
4.3 Medidas de seguridad adicionales para evitar tensiones de	contacto
Para que no aparezcan tensiones de contacto exteriores ni inte	
de seguridad :	
4.3.1 CT interior	
a X Las puertas y rejillas metálicas que dan al exterio con masas conductoras susceptibles de quedar someti	or del centro no tendrán contacto eléctrico idas a tensión debido a defectos o averías.
b X En el piso del CT se instalará un mallazo cubierto p a la puesta a tierra de protección del CT.	por una capa de hormigón de 10 cm conectado
c Empleo de pavimentos aislantes	
d Otras	
4.3.2 CT sobre apoyo	
Se colocará un mallazo que sobresalga 1 m en todas la que se conectará a la tierra de protección, cubrién cm de espesor	as direcciones respecto a la base del apoyo, ndolo luego con una capa de hormigón de 10
b Empleo de pavimentos aislantes	
c Otras	

				(I' _d) y tensiones de paso
(V'p y V'p(acc))	del electrodo	tipo seleccionado	, para la resistividad	del terreno medida (ρ)

*	Resistencia	de	puesta	a	tierra	(R'+	≤ R+	.)

$$R'_t = K_r - \rho =$$
 x

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R'_{t})^{2} + \chi_{n}^{2}}} = \frac{U}{1.73\sqrt{\left[+ \frac{1}{2} + \frac$$

I'd = A

* Tensión de paso en el exterior

$$V_p = K_p \cdot \rho \cdot I_d = x$$

* Tensión de paso en el acceso al CT

$$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} = x$$

V'p(acc)= V

* Tensión de defecto

4.5.- Duración total de la falta

X Desconexión inicial:

x Relé a tiempo independiente

t' = 0,5

Relé a tiempo dependiente :

Constantes del relé

K' = ______

Intensidad de arranque

EJEMPLO 2 (Neutro puesto a tierra)	ANEXO 5
Reenganche a menos de 0,5 segundos	
Relé a tiempo independiente	t" = s
Relé a tiempo dependiente :	_ <u>,,,</u>
Constantes del relé	n" -
Intensidad de arranque	I"a - A
$t'' = \frac{K''}{I''_d} - 1$	t" =s
Duración total t = t' + t" 4.6 Separación entre los sistemas de puesta a tierra de protecci	t = 0.5 s ión (masas) y de servicio (neutro de b.t)
X Sistema de puesta a tierra único (V' _d ≤ 1000 V)	
Sistemas de puesta a tierra separados e independientes	s :
* Distancia mínima de separación (Tabla 6 página 2	2) :
$D = \frac{\rho \cdot I'_d}{2000 \cdot \Pi} = \frac{\chi}{6283}$	D ≥ m
5 VALORES ADMISIBLES Tablas 1 (página 8) y 3 (página 10)	
Para t =	s (según apartado 4.5)
$X = 0.9 \ge t > 0.1$ $K = 72$	2 n = 1
3 ≥ t > 0,9 K = 78	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{K}{t^n} = 50$	

ANEXO 5

EJEMPLO 2 (Neutro puesto a tierra)

* Tensión de paso en el exterior

* Tensión de paso en el acceso al CT

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible	
Tensión de paso en el exterior	v' _p v	≤	v _p - v	
Tensión de paso en el acceso al CT	V _p (acc) - V	≤	V _{p(acc)} = V	

EJEMPLO 2 (Neutro puesto a tierra)

6.4.- Tensión e intensidad de defecto

Concepto	Valor calculado	Condición	Valor admisible
Tensión de defecto	v' _d v	≤	V _{bt} = V
Intensidad de defecto	I'd - A	>	I'a = A I"a = A

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

$$r = \sqrt{\frac{S_{\rm m}}{\Pi}} \sqrt{\frac{2000000}{3.14}}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{200}{4 \cdot 798} + \frac{200}{750} + \frac{80}{100}$$

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + X_{n}^{2}}} = \frac{25000}{\sqrt{3} \sqrt{\begin{bmatrix}0 + 0.3\end{bmatrix}^{2} + 25}^{2}}$$

$$I'_{d} = 577.9 A$$

* Tensión de defecto

$$V'_{d} = R'_{m} \cdot I'_{d} = \begin{bmatrix} 0.3 & x & 577.9 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

A5-17

EJEMPLO 3

(Neutro aislado)

EJEM	PLO	3
(neutro	aisla	do)

	EX	

O REFERENCIA D	EL CT				
* Código					
* Población					
1 DATOS DE PAR	TIDA				
1.1 Caracteris	ticas iniciales				
* Tensión	de servicio	· · · · · · · · · · · · · · · · · · ·	-	20000	v
	- Longitud total	La	-	175	km
	- Capacidad	c _a	-	0,006	μF/km
* Red subto			.	1	
	- Longitud total	L _c	-		km
* Duración	- Capac idad	Cc	-	0,25	μF/km
	n de la falta				
X Des	sconexión inicial	•			
X	Relé a tiempo independiente	t'	=	0,25	s
	Relé a tiempo dependiente				
	Constantes del relé	_ K'			
		n'	•		
Int	ensidad de arranque	I'a	-		A
X Ree	enganche en menos de 0,5 segundos	en en en en en en en en en en en en en e		<u> </u>	
X	Relé a tiempo independiente	t"	•	0,5	s
	Relé a tiempo dependiente				
	Constantes del rele	 K"	-		
		n"	=		
Int	ensidad de arranque	I"a	-		
* Nivel de	aislamiento de las instalaciones de BT del CT	v _{bt}	- [6000] v
* Red subte	errânea de AT de suficiente conductibilidad				
X NO					
	Complete and the control of the cont				
	(ver justificación en apartado 7)				_
-	Superficie del círculo de igual área que la cubierta por la malla	S _m	-		m ²
- I	Longitud total de los cables existentes en la malla con cubierta conductora	L	- [m
= 1	Longitud total de las picas verticales incluidas en la malla	L'	- [m
					•

EJEMPLO	3
(neutro aisla	do)

ANEXO !	5
---------	---

	Caracte			1 OT
1 7 _	l'aracte	ricti	റമട നല	1 1.1

	E	n	ed	i	f	i	С	i	0

Ais lado

Destinado a otros usos

Dimensiones del local

a				n
b	=			Г

X Sobre apoyo

Sobre 1 apoyo

Sobre 2 apoyos

2.- CARACTERISTICAS DEL TERRENO

* Resistividad del terreno

3.- OBSERVACIONES

Protección por tensión homopolar por lo que no se indican intensidades de arranque de protecciones

4.- CALCULO

4.1.- Resistencia máxima de la puesta a tierra de las masas del CT (R_t) e intensidad de defecto (I_d)

$$I_{d} = \frac{\sqrt{3} U(\omega C_{a} L_{a} + \omega C_{c} L_{c})}{\sqrt{1 + (\omega C_{a} L_{a} + \omega C_{c} L_{c})^{2} (3R_{t})^{2}}}$$

$$I_{d} = \frac{12}{\sqrt{1 + (\omega C_{a} L_{a} + \omega C_{c} L_{c})^{2} (3R_{t})^{2}}}$$

$$R_{t} = \frac{497.5}{\sqrt{1 + (\omega C_{a} L_{a} + \omega C_{c} L_{c})^{2} (3R_{t})^{2}}}$$

- 4.2.- Selección del electrodo tipo (de entre los incluidos en las tablas del ANEXO 2 del documento UNESA "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación")
 - "Valor unitario" máximo de la resistencia de puesta a tierra del electrodo

$$\kappa_{r} \leq \frac{R_{t}}{\rho} = \frac{497.5}{250}$$

$$K_r \leq \frac{\Omega}{\Omega \cdot m}$$

Dimensiones horizontales del electrodo

	EJEMPLO 3 (neutro aislado)	ANEXO 5
	* Picas alineadas Si Separación entre picas X No	
	* Sección del conductor de cobre desnudo * Profundidad del electrodo horizontal	50 mm ²
	X 0,50 m 0,80 m	
	* Número de picas	* Longitud de las picas L _p (m)
	X 0 2 3 4 6	2 4 6 8
	* Electrodo seleccionado (indicar código de la configuraci	ón) 20-20/5/00
•	- Parámetros característicos del electrodo :	Ω
	De la resistencia	$K_r = 0,216$ $\Omega \cdot m$
	De la tensión de paso	$K_{p} = \boxed{0.0485} \boxed{(\Omega \cdot m) (A)}$
	De la tensión de contacto exterior	$K_{c} = 0.1470 \qquad \overline{(\Omega \cdot m)(A)}$
	Medidas de seguridad adicionales para evitar tensiones de co Para que no aparezcan tensiones de contacto exteriores ni inter seguridad:	
	.1 CT interior	
	a Las puertas y rejillas metálicas que dan al exterior con masas conductoras susceptibles de quedar sometida	del centro no tendrán contacto eléctrico as a tensión debido a defectos o averías.
	b En el piso del CT se instalará un mallazo cubierto por a la puesta a tierra de protección del CT.	r una capa de hormigón de 10 cm conectado
	c Empleo de pavimentos aislantes	
	d 0tras	
4.3	-2 CT sobre apoyo	
	Se colocará un mallazo que sobresalga 1 m en todas las que se conectará a la tierra de protección, cubriéndo cm de espesor	direcciones respecto a la base del apoyo, olo luego con una capa de hormigón de 10
	b Empleo de pavimentos aislantes	
	c Otras	

.

EJE	MP	LO	3
(Neut	ro a	islac	(ot

4.4.- Valores de resistencia de puesta a tierra (R' $_t$), intensidad de defecto (I' $_d$) y tensiones de paso V' $_p$ y V' $_{p(acc)}$ del electrodo tipo seleccionado, para la resistividad del terreno medida (ρ)

*	Resistencia	de	puesta	а	tierra	(R' ₊	$\leq R_{t}$

$$R'_t = K_r \cdot \rho =$$
 0,216 \times 250

$$R'_t = \begin{bmatrix} 54 & \Omega \end{bmatrix}$$

* Intensidad de defecto

$$I'_{d} = \frac{\sqrt{3} \ \text{U} \ (\omega \ \text{C}_{a} \ \text{L}_{a} + \omega \ \text{C}_{c} \ \text{L}_{c})}{\sqrt{1 + (\omega \ \text{C}_{a} \ \text{L}_{a} + \omega \ \text{C}_{c} \ \text{L}_{c})^{2} \ (3R'_{t})^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \ (1'9 \ \text{L}_{a} + 78'5 \ \text{L}_{c}) \cdot \text{U}}}{\sqrt{1 + \left[10^{-6} \ (1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c})\right]^{2} \cdot 9 \cdot (R'_{t})^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \ (1'9 \ \text{L}_{a} + 78'5 \cdot \text{L}_{c}) \cdot \text{U}}}{\sqrt{1 + \left[10^{-6} \ (1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c})\right]^{2} \cdot 9 \cdot (R'_{t})^{2}}}}$$

$$\sqrt{3} \quad 10^{-6} \quad \boxed{1'9 \cdot \boxed{175} + 78'5 \cdot \boxed{1}} \quad \boxed{20000}$$

$$\sqrt{1 + \boxed{10^{-6} (1'9 \cdot \boxed{175} + 78'5 \cdot \boxed{1}})} \quad 2 \cdot 9 \cdot \boxed{54}$$

$$V'_p = K_p \cdot \rho \cdot I'_d = \begin{bmatrix} 0.0485 \\ x \end{bmatrix} \times \begin{bmatrix} 250 \\ x \end{bmatrix} \times \begin{bmatrix} 14 \\ \end{bmatrix}$$

* Tensión de paso en el acceso al CT

$$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} = 0.1470 \times 250 \times 14$$

* Tensión de defecto

4.5.- Duración total de la falta

X Desconexión inicial:

X Relé a tiempo independiente

Relé a tiempo dependiente :

$$t' = \frac{K'}{\begin{bmatrix} I'd \\ I'a \end{bmatrix} - 1} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}} = \frac{\begin{bmatrix} I'd \\ -1 \end{bmatrix}}{\begin{bmatrix} I'd \\ -1 \end{bmatrix}$$

	EJ		ar		\sim	2	
	EJ		/I F	Ľ	J	J	
1	Ne	utr	n a	iei	ar	ر اما	١

Χ	Reenganche a menos de 0,5 segundos			
	x Relé a tiempo independiente	t" =	0,50	s
	Relé a tiempo dependiente :	•		1
	Constantes del relé	K" =		
. •		n" =		
	Intensidad de arranque	I"a =] A
••	t" =	t" =		s
	I"d - 1 - 1			
	Duración total t = t' + t"	t =	0,75	s

16 Consusaián antua	las sistemas de succes			
4.0 Separacion entre	ios sistemas de puesta	a tierra de protección (ma	asas) v de servicio ((neutro de b.f)
				(1100010

- \overline{X} Sistema de puesta a tierra único (V'd < 1000 V)
- Sistemas de puesta a tierra separados e independientes
 - * Distancia mínima de separación (Tabla 6 página 22):

D ≥ | n

Tablas 1 (página 8) y 3 (página 10)

Para t = 0.75 s (según apartado 4.5)

X	$0.9 \ge t > 0.1$	K = 72	n = 1
	3 ≥ t > 0,9	K = 78,5	n = 0,18
	5 ≥ t > 3	- K = 64 V	
	t > 5	- K − 50 V	

2400

EJEMPLO 3 (Neutro aislado)

* Tensión de paso en el exterior

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000} \right) = 10 \cdot \left[\frac{72}{0.75^{1}} \right] \left[1 + \frac{6 \cdot 250}{1000} \right]$$

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000} \right) = 10 \cdot \left[\frac{72}{0.75^{1}} \right] \left[1 + \frac{6 \cdot 250}{1000} \right]$$

* Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \left[\frac{72}{0.75^{1}}\right] \left[1 + \frac{3 \cdot 250}{1000} + 3 \cdot 3000\right]$$

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \left[\frac{72}{0.75^{1}}\right] \left[1 + \frac{3 \cdot 250}{1000} + 3 \cdot 3000\right]$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2. - Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible
Tensión de paso en el exterior	V' _p - 170 V	≤	V _p - 2400 V
Tensión de paso en el acceso al CT	Vp(acc) = 514 V	<u> </u>	V _{p(acc)} = 10320 V

EJEMPLO 3

(Neutro aislado)

6.4.- Tensión de defecto

Concepto	Valor calculado	Condición	Valor admisible	
Tensión de defecto	V' _d - 756 V	≤	V _{bt} - 6000 V	

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

$$r = \sqrt{\frac{S_{\rm m}}{\Pi}} = \sqrt{\frac{3.14}{3.14}}$$

r = m

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{}{4} + \frac{}{} + \frac{}{}$$

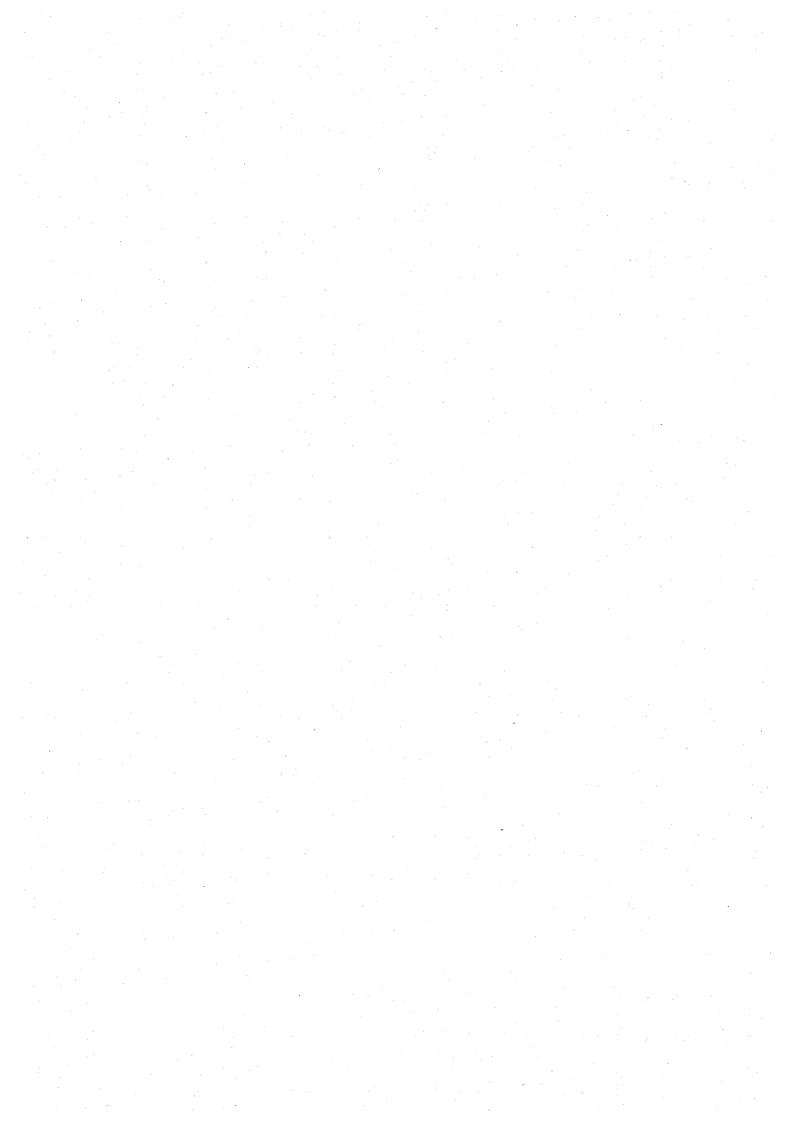
R'm =

* Intensidad de defecto

$$I'_{d} = \frac{\sqrt{3} \quad \text{U} \left(\omega \quad \text{C}_{a} \quad \text{L}_{a} + \omega \quad \text{C}_{c} \quad \text{L}_{c} \right)}{\sqrt{1 + \left(\omega \quad \text{C}_{a} \quad \text{L}_{a} + \omega \quad \text{C}_{c} \quad \text{L}_{c} \right)^{2} \left(3R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}} = \frac{\sqrt{3} \cdot 10^{-6} \quad \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \quad \text{U}}}}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \text{L}_{a} + 78'5 \cdot \text{L}_{c} \right) \right]^{2} \cdot 9 \cdot \left(R'_{m} \right)^{2}}}}$$

$$= \frac{\sqrt{3 \cdot 10^{-6} \left[1'9 \cdot \boxed{ + 78'5 \cdot \boxed{ }} \cdot \boxed{ } \right]}{\sqrt{1 + \left[10^{-6} \left(1'9 \cdot \boxed{ + 78'5 \cdot \boxed{ }} \right]^{2} \cdot 9 \cdot \boxed{ }^{2}}}$$

* Tensión de defecto


A 5 - 2 5

ANEXO 5

EJEMPLO 4 (Neutro puesto a tierra)

EJEMPLO 4

(Neutro puesto a tierra)

EJEMPLO 4

(Neutro	puest	o a	tierra)

0 REFERENCIA DEL CT				
* Código				
* Población				
1 DATOS DE PARTIDA				
1.1 Características iniciales				
* Tensión de servicio	. · U	=	25000	v
* Puesta a tierra del neutro	R _n	=	0	Ω
	_ x _n	-	25	Ω
* Duración de la falta				
X <u>Desconexión inicial</u>				
Relé a tiempo independiente	t'			s
x Relé a tiempo dependiente	_		<u> </u>	
Constantes del relé	K'	=	40	
	n'	=	2	
Intensidad de arranque	Ι'	a =	60	A
Reenganche en menos de 0,5 segundos				
X Relé a tiempo independiente	t"	=	0.5	s
Relé a tiempo dependiente	· .			
Constantes del relé	K"	. =		
	_ n"			
Intensidad de arranque	I *	a =	60	A
* Nivel de aislamiento de las instalaciones de BT del CT	v _b ,	: -	8000	v
* Red subterrânea de AT de suficiente conductibilidad				
X NO				
SI (ver justificación en apartado 7)				
 Superficie del circulo de igual área que la cubierta por la malla 	S	m =		m ²
- Longitud total de los cables existentes en la malla con cubierta conductora	L	=		m
 Longitud total de las picas verticales incluidas en la malla 		· •		m

	, E	JE	M	PL() 4	
(Ne	utr	ор	ues	to a	a tic	erra)

1.2.	- Cara	cterist	icas	de 1	CT

Y	En	ad i	fic	in
A	L E II	eui	110	10

X Aislado

Destinado a otros usos

Dimensiones del local

a	-	3	r
b	=	3	r

Sobre apoyo

Sobre 1 apoyo

Sobre 2 apoyos

2.- CARACTERISTICAS DEL TERRENO

* Resistividad del terreno

$$O = 300 \Omega \cdot m$$

3.- OBSERVACIONES

4.- CALCULO

4.1.- Resistencia máxima de la puesta a tierra de las masas del CT (R_t) e intensidad de defecto (I_d)

$$I_{d} \cdot R_{t} \le V_{bt}$$
; $I_{d} > I'_{a} = \begin{bmatrix} 60 \\ 10 \end{bmatrix}$

$$I_{d} = \begin{bmatrix} U \\ \sqrt{3}\sqrt{(R_{n} + R_{t})^{2} + X_{n}^{2}} \end{bmatrix}$$

$$R_{t} = \begin{bmatrix} 16,64 \\ 0 \end{bmatrix}$$

- 4.2.- Selección del electrodo tipo (de entre los incluidos en las tablas del ANEXO 2 del documento UNESA "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación")
 - * "Valor unitario" máximo de la resistencia de puesta a tierra del electrodo

$$K_r \leq \frac{R_t}{\rho} = \frac{16.64}{300}$$

$$K_r \leq \frac{\Omega}{\Omega \cdot m}$$

* Dimensiones horizontales del electrodo

	EJEMPLO 4 (Neutro puesto a tierra)	A5-28 ANEXO 5
•	Picas alineadas	
		m
	X No	
	section de Conductor de Cobre destidado	50 mm ²
	Profundidad del electrodo horizontal	
	X 0,50 m	
	0,80 m	
, .		
	Número de picas	* Longitud de las picas L _p (m)
	0	2
		4
	3	6
		X 8
	6	
	X 8	
*	Electrodo seleccionado (indicar código de la configuració	n) 30-30/5/88
	- Parámetros característicos del electrodo :	
	De la resistencia	$\kappa_{\rm r} = \frac{\Omega}{0.050}$
	De la tensión de paso	$K_p = 0.0095 \frac{V}{(\Omega \cdot m)}$
	Do la tamaión de contente outquien	$\kappa_{c} = 0.0146$
	De la tensión de contacto exterior	$K_{\rm C} = 0.0146 \overline{(\Omega \cdot m)}$
4.3 Me	didas de seguridad adicionales para evitar tensiones de con	ntacto
Para de segur	que no aparezcan tensiones de contacto exteriores ni interiidad:	ores, se adoptan las siguientes medid
4.3.1	CT interior	
a	X las Duertas y rejillas metálicas que dan al exterior d	
	Las puertas y rejillas metálicas que dan al exterior d con masas conductoras susceptibles de quedar sometidas	s a tensión debido a defectos o avería
b	X En el piso del CT se instalará un mallazo cubierto por a la puesta a tierra de protección del CT.	una capa de hormigón de 10 cm conecta
С	Empleo de pavimentos aislantes	
d	Otras	
4.3.2	CT sobre apoyo	
1.3.2.		
a	Se colocará un mallazo que sobresalga 1 m en todas las d que se conectará a la tierra de protección, cubriéndo cm de espesor	lirecciones respecto a la base del apoy lo luego con una capa de hormigón de

EJEMPLO 4 (Neutro puesto a tierra)

4.4.- Valores de resistencia de puesta a tierra (R' $_{t}$), intensidad de defecto (I' $_{d}$) y tensiones de paso (V' $_{p}$ y V' $_{p(acc)}$) del electrodo tipo seleccionado, para la resistividad del terreno medida (ρ)

* Resistencia de puesta a tierra $(R'_t \le R_t)$

$$R'_{+} = \begin{bmatrix} 15 \\ \end{bmatrix} \Omega$$

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R'_{t})^{2} + X_{n}^{2}}} = \frac{25000}{1.73\sqrt{0} + 15} + 25$$

I'd = 495 A

* Tensión de paso en el exterior

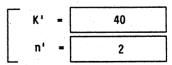
$$V'_p = K_p \cdot \rho \cdot I'_d = \begin{bmatrix} 0.0095 \\ x \end{bmatrix} \times \begin{bmatrix} 300 \\ x \end{bmatrix} \times \begin{bmatrix} 495 \\ \end{bmatrix}$$

* Tensión de paso en el acceso al CT

$$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} = 0.0146 \times 300 \times 495$$

* Tensión de defecto

$$V'_d = R'_t \cdot I'_d = \begin{bmatrix} 15 \\ \end{bmatrix} \times \begin{bmatrix} 495 \\ \end{bmatrix}$$

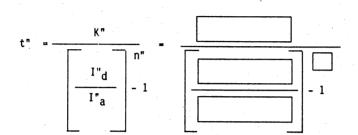

4.5.- Duración total de la falta

X Desconexión inicial:

Relé a tiempo independiente

x Relé a tiempo dependiente :

Constantes del relé


Intensidad de arranque

$$t' = \frac{K'}{\begin{bmatrix} I'_d \\ I'_a \end{bmatrix} - 1} = \frac{40}{\begin{bmatrix} 495 \\ \hline 60 \end{bmatrix}} = \frac{1}{\begin{bmatrix} 2 \\ \hline 60 \end{bmatrix}}$$

EJ	EMPL (O 4
(Neutro	puesto	a tierra)

Х	Reenganche a menos de 0,5 segundos
	x Relé a tiempo independiente
	Relé a tiempo dependiente :
	Constantes del relé

Duración	total	t =	t'	+ . t"

4.6.- Separación entre los sistemas de puesta a tierra de protección (masas) y de servicio (neutro de b.t)

- Sistema de puesta a tierra único $(V'_d \le 1000 \text{ V})$
- Sistemas de puesta a tierra separados e independientes
 - * Distancia mínima de separación (Tabla 6 página 22):

$$D = \frac{\rho \cdot I'_{d}}{2000 \cdot \Pi} = \frac{300 \times 495}{6283}$$

(según apartado 4.5)

Ш	$0.9 \ge t > 0.1$	K = 72	n = 1
X	3 ≥ t > 0,9	K = 78,5	n = 0,18
	5 ≥ t > 3	K = 64 V	
	t > 5	K = 50 ∨	<u></u>

EJEMPLO 4 (Neutro puesto a tierra)

* Tensión de paso en el exterior

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000}\right) = 10 \cdot \left[\frac{78.5}{(1.1)^{0.18}}\right] \left[1 + \frac{6 \cdot 300}{1000}\right]$$

$$V_{p} = 2161 \qquad V_{p} = 2161$$

* Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \left[\frac{78,5}{(1,1)^{0},18}\right] \left[1 + \frac{3 \cdot 300}{1000} + 3 \cdot 3000\right]$$

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \left[\frac{78,5}{(1,1)^{0},18}\right] \left[1 + \frac{3 \cdot 300}{1000} + 3 \cdot 3000\right]$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible	
Tensión de paso en el exterior	V' _p - 1411 V	≤	V _p = 2161 V	
Tensión de paso en el acceso al CT	Vp(acc) = 2168 V	≤	V _{p(acc)} = 8411 V	

EJEMPLO 4 (Neutro puesto a tierra)

6.4. - Tensión e intensidad de defecto

Concepto	Va	lor calculado	Condición	Valor admisible
Tensión de defecto	۷'d	= 7425 V	≤	V _{bt} = 8000 V
Intensidad de defecto	I'd	= 495 A	>	I'a = 60 A I"a = 60 A

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

$$r = \sqrt{\frac{S_m}{\Pi}} = \sqrt{\frac{3.14}{3.14}}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{1}{4 \cdot r} + \frac{1}{4 \cdot r} + \frac{1}{4 \cdot r}$$

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + \chi_{n}^{2}}} = \frac{U}{\sqrt{3} \sqrt{\left[+ \frac{1}{4} + \frac{1}{4} \right]^{2}}}$$

$$I'_{d} = A$$

* Tensión de defecto

$$V'_d = R'_m \cdot I'_d =$$

$$V'_d = \begin{bmatrix} V'_d = & V'_d$$

A5-33

ANEXO 5

EJEMPLO 5 (Neutro puesto a tierra)

EJEMPLO 5

(Neutro puesto a tierra)

	EJ	EN	IPL	0	5	
(Net	ıtro	pue	sto	8	tier	ra)

A DEEEDEMOTA DEL CT				
• Codigo				
* Población				
1 DATOS DE PARTIDA				
1.1 Características iniciales				
		í		_
* Tensión de servicio	U	=	20000	_
* Puesta a tierra del neutro	R _n	=	0	\bigcap_{Ω}
Tuesta a tierra del neutro	x _n	_ [30	\exists_{α}
* Duración de la falta	<u> </u>	·		
X Desconexión inicial				
Relé a tiempo independiente	t'	-	0,5	s
Relé a tiempo dependiente				-
Constantes del relé	Γ K'	=		
constantes del Pele	n' ²	-		Ī.
Intensidad de arranque	∟ I'a	-	40	
Reenganche en menos de 0,5 segundos				ك
Relé a tiempo independiente	t"	-		s
Relé a tiempo dependiente				
Constantes del relé	К"	=	•	
	n"	=		
Intensidad de arranque	I"a	_	Marie de la companya del companya de la companya de la companya del companya de la companya de l	A
	_	!		
* Nivel de aislamiento de las instalaciones de BT del CT	$v_{ m bt}$	- [8000	V
* Red subterrânea de AT de suficiente conductibilidad				
X NO				
SI (ver justificación en apartado 7)				
 Superficie del circulo de igual área que la cubierta por la malla 	S _m	· [m ²
 Longitud total de los cables existentes en la malla con cubierta conductora 	L	• [] m
 Longitud total de las picas verticales incluidas en la malla 	L'	- [m

ANEXO 5

EJEMPLO 5 (Neutro puesto a tierra)

		ANEXO
o puesto a tierra)		7.11 2 7.1
- 1	· · · · · · · · · · · · · · · · · · ·	

1.2	Caracteristicas	de l	CT

	1.		
l v	En	odif	icia
١ ^	1	cuii	1010

X Aislado

Destinado a otros usos

Dimensiones del local

a = 5 m b = 3 m

Sobre apoyo

Sobre 1 apoyo

Sobre 2 apoyos

2.- CARACTERISTICAS DEL TERRENO

* Resistividad del terreno

$$\rho = 350 \quad \Omega \cdot m$$

3.- OBSERVACIONES

4.- CALCULO

4.1.- Resistencia máxima de la puesta a tierra de las masas del CT (R_t) e intensidad de defecto (I_d)

$$I_{d} \cdot R_{t} \leq V_{bt}$$
; $I_{d} > I_{a} = 40$

$$I_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R_{t})^{2} + X_{n}^{2}}}$$
 $I_{d} = 277.6$

$$R_{t} = 28.8$$

4.2.- Selección del electrodo tipo (de entre los incluidos en las tablas del ANEXO 2 del documento UNESA "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación")

* "Valor unitario" máximo de la resistencia de puesta a tierra del electrodo

$$\kappa_{\rm r} \leq \frac{R_{\rm t}}{\rho} = \frac{28.8}{350}$$

$$K_r \leq \frac{\Omega}{0.0822} \frac{\Omega}{\Omega \cdot m}$$

* Dimensiones horizontales del electrodo

EJEMPLO 5	A5-36
(Neutro puesto a tierra)	ANEXO 5
* Picas alineadas	
Si Separación entre picas	m
X No	
* Sección del conductor de cobre desnudo* Profundidad del electrodo horizontal	50 mm ²
Fromulada del electrodo norizontal	
0,50 m	
X 0.80 m	
* Número de picas	* Longitud de las picas L _p (m)
	X 2
$\prod_{i=1}^{n} 2^{i}$	
	☐ *
and the second s	6
	8
<u> </u>	
X 8	
 * Electrodo seleccionado (indicar código de la configu 	uración) 50-30/8/82
- Parámetros característicos del electrodo :	
De la resistencia	$\kappa_{r} = \frac{\Omega}{\Omega \cdot m}$
De la tensión de paso	$K_p = 0.0130 \frac{V}{(\Omega \cdot m)(A)}$
De la tensión de contacto exterior	$K_{c} = 0.0359 \frac{V}{(\Omega \cdot m)(A)}$
4.3 Medidas de seguridad adicionales para evitar tensiones o	
Para que no aparezcan tensiones de contacto exteriores ni i de seguridad :	
4.3.1 CT interior	
a X Las puertas y rejillas metálicas que dan al exte	uiou dol gontuo no tonduén gontosto eléctrico
con masas conductoras susceptibles de quedar som	etidas a tensión debido a defectos o averías.
b X En el piso del CT se instalará un mallazo cubiert a la puesta a tierra de protección del CT.	to por una capa de normigon de 10 cm conectado
c Empleo de pavimentos aislantes	
d Otras	
4.3.2 CT sobre apoyo	
Se colocará un mallazo que sobresalga 1 m en todas que se conectará a la tierra de protección, cubr cm de espesor	s las direcciones respecto a la base del apoyo, riéndolo luego con una capa de hormigón de 10
b Empleo de pavimentos aislantes	
c Otras	

ANEXO 5

EJEMPLO 5 (Neutro puesto a tierra)

4.4.- Valores de resistencia de puesta a tierra (R' $_t$), intensidad de defecto (I' $_d$) y tensiones de paso (V' $_p$ y V' $_p$ (acc)) del electrodo tipo seleccionado, para la resistividad del terreno medida (ρ)

* Resistencia de puesta a tierra $(R'_t \le R_t)$

$$R'_{t} = K_{r} \cdot \rho = 0.079$$
 × 350

R'_t = 27,65 Ω

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3}\sqrt{(R_{n} + R'_{t})^{2} + \chi_{n}^{2}}} \frac{20000}{1,73\sqrt{\boxed{0} + 27,65}} + 30$$

I'd = 283 A

* Tension de paso en el exterior

$$V_p = K_p \cdot \rho \cdot I_d = \begin{bmatrix} 0.0130 \\ x \end{bmatrix} \times \begin{bmatrix} 350 \\ x \end{bmatrix} \times \begin{bmatrix} 283 \\ \end{bmatrix}$$

V'_p = 1288 V

* Tensión de paso en el acceso al CT

$$V'_{p(acc)} = V'_{c} = K_{c} \cdot \rho \cdot I'_{d} = \begin{bmatrix} 0.0359 \\ x \end{bmatrix} \times \begin{bmatrix} 350 \\ x \end{bmatrix} \times \begin{bmatrix} 283 \\ \end{bmatrix}$$

V'p(acc)= 3556 V

* Tensión de defecto

V'd = 7825

4.5.- Duración total de la falta

X Desconexión inicial:

x Relé a tiempo independiente

t' = 0,5 S

Relé a tiempo dependiente :

Constantes del relé

n' =

Intensidad de arranque

I'a = 40 A

EJ	EMPL	Ó	5
(Neutro	puesto	a	tierra

ANEXO 5

Reenganche	a menos de 0	,5 segundos
Reléa	tiemno inden	endianta

Intensidad de arranque

$$t'' = \frac{K''}{\begin{bmatrix} I''_d \\ I''_a \end{bmatrix} - 1} = \frac{\begin{bmatrix} I''_d \\ - I \end{bmatrix}}{\begin{bmatrix} I''_d \\ - I \end{bmatrix}} - 1$$

Duración total t = t' + t''

4.6.- Separación entre los sistemas de puesta a tierra de protección (masas) y de servicio (neutro de b.t)

- Sistema de puesta a tierra único ($V'_d \le 1000 V$)
- X Sistemas de puesta a tierra separados e independientes
 - * Distancia mínima de separación (Tabla 6 página 22):

$$D = \frac{\rho \cdot I'_{d}}{2000 \cdot \Pi} = \frac{350}{6283} \times 283$$

5.- VALORES ADMISIBLES

Para t = 0,5 s (según apartado 4.5)

X	$0.9 \ge t > 0.1$	K = 72	n = 1
	3 ≥ t > 0.9	K = 78,5	n = 0,18
	5 ≥ t > 3	$\frac{K}{t^n} = 64 \text{ V}$	<u></u>
	t > 5	K = 50 V	

EJEMPLO 5 (Neutro puesto a tierra)

* Tensión de paso en el exterior

$$V_{p} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{6 \rho}{1000}\right) = 10 \cdot \boxed{\frac{72}{0.51}} \left[1 + \frac{6 \cdot \boxed{350}}{1000}\right]$$

$$V_{p} = \boxed{4464}$$

* Tensión de paso en el acceso al CT

$$V_{p(acc)} = \frac{10 \text{ K}}{t^{n}} \left(1 + \frac{3 \rho + 3 \rho'}{1000}\right) = 10 \cdot \boxed{\frac{72}{0.5^{1}}} \boxed{1 + \frac{3 \cdot \boxed{350} + 3 \cdot \boxed{3000}}{1000}}$$

$$V_{p(acc)} = \boxed{15912}$$

6.- COMPROBACION DE QUE LOS VALORES CALCULADOS SATISFACEN LAS CONDICIONES EXIGIDAS

6.1.- Tensiones de paso y contacto en el interior

- Se han adoptado las medidas de seguridad "b" ó "c" del aptdo. 4.3.1, o la "a" ó "b" del aptdo. 4.3.2, por lo que no será preciso calcular las tensiones de paso y contacto en el interior, ya que éstas serán prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o los correspondientes cálculos y comprobaciones de las tensiones de paso y contacto interiores.

6.2.- Tensiones de contacto exterior

- Se ha adoptado la medida de seguridad "a" del aptdo. 4.3.1, por lo que no será preciso calcular la tensión de contacto exterior, ya que ésta será prácticamente cero.
- Se adjunta anexo justificando otras medidas adicionales de seguridad, o el correspondiente cálculo y comprobación de la tensión de contacto exterior.

6.3.- Tensión de paso en el exterior y de paso en el acceso al CT

Concepto	Valor calculado	Condición	Valor admisible
Tensión de paso en el exterior	V'p = 1288 V	≤	V _p - 4464 V
Tensión de paso en el acceso al CT	Vp(acc) = 3556 V	<u> </u>	V _{p(acc)} = 15912 V

EJEMPLO 5 (Neutro puesto a tierra)

6.4.- Tensión e intensidad de defecto

Concepto	Valor calculado	Condición	Valor admisible
Tensión de defecto	V' _d = 7825 V	<u> </u>	V _{bt} - 8000 v
Intensidad de defecto	I' _d = 283 A	>	I'a = 40 A I"a =A

7.- JUSTIFICACION DE LA PUESTA A TIERRA MEDIANTE LA UTILIZACION DE LA RED DE CABLES SUBTERRANEOS

* Radio del círculo de igual superficie que el área cubierta por la malla

$$r = \sqrt{\frac{S_{\rm m}}{\Pi}} = \sqrt{\frac{3,14}{3}}$$

* Valor de la resistencia de la malla de puesta a tierra formada por los cables subterráneos de alta tensión con cubierta conductora y las picas conectadas a la misma, ampliada con los cables de cubierta aislante

$$R'_{m} = \frac{\rho}{4 \cdot r} + \frac{\rho}{L + L'} = \frac{}{4} + \frac{}{} + \frac{}{}$$

* Intensidad de defecto

$$I'_{d} = \frac{U}{\sqrt{3} \sqrt{(R_{n} + R'_{m})^{2} + \chi_{n}^{2}}} = \frac{U}{\sqrt{3} \sqrt{\left[+ \frac{1}{2} +$$

* Tensión de defecto

$$V'_d = R'_m \cdot I'_d =$$

$$V'_d =$$

$$V'_d \leq 1000 V$$

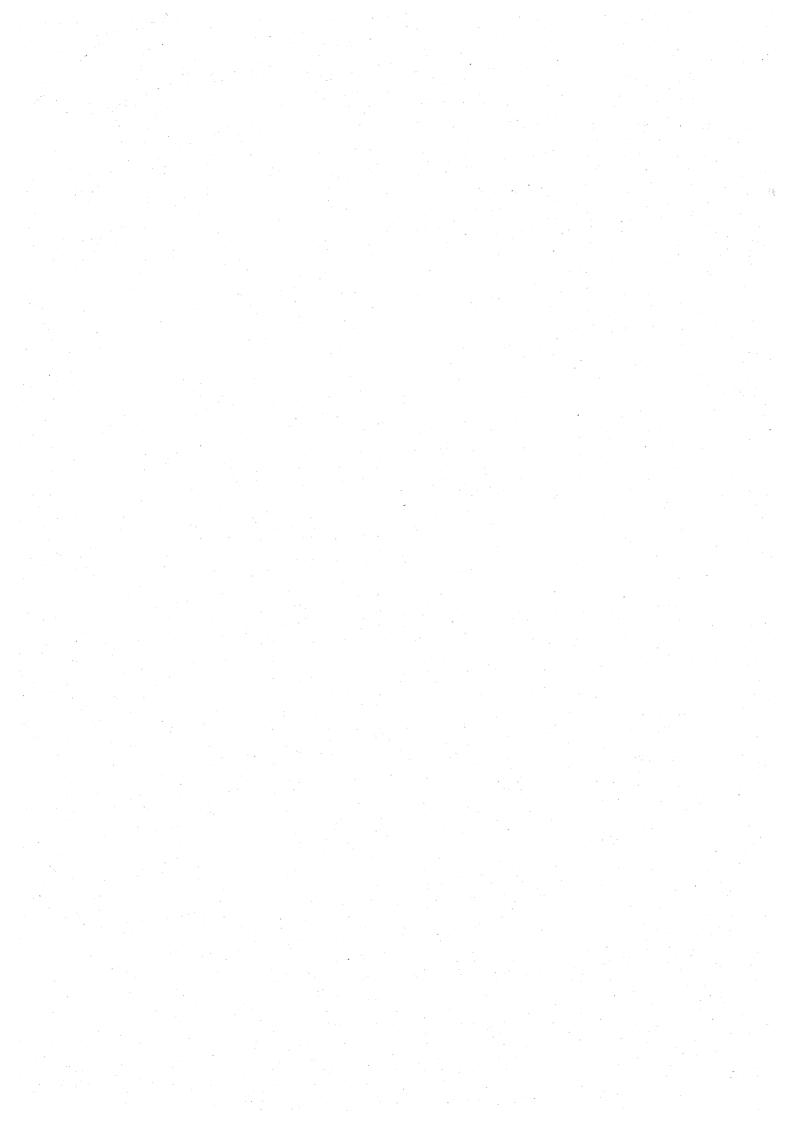

A 6 -

BIBLIOGRAFIA

ANEXO 6

ANEXO 6

BIBLIOGRAFIA



BIBLIOGRAFIA

- W. Koch, "Erdungsmassnahmen für Höchstspannungsanlangen mit geerdetem Sterupunkt", Elektrotechnische Zeitschrift, Vol. 71. February 1950, pp 89-91.
- E. Gross and R. Hollitch, "Grounding Grids for High-Voltage Stations III", AIEE Trans. Vol. 75, October 1956, pp 926-935
- B. Thapar and K. Puri, "Mesh Potentials in High-Voltage Grounding Grids", IEEE Trans. Power Apparatus and Systems, Vol. PAS. 86, February 1967, pp. 249-254.
- P.L. Bucheri y otros, "Contributo al dimensionamento di dispersori di terra di forma semplice," L'energía elettrica, n^2 7, 1970.
- "IEEE Guide for Safety in Substation grounding", IEEE Std.80, 1976.
- J. Nahman, "Irregularity correction factors for mesh and step voltages of grounding grids", IEEE Trans. Power Apparatus and Systems, n 1° , January 1980.
- P.L.Bucheri y otro, "Characteristic performances of meshed earth structures in homogeneous ground: normalization in order to design earthing systems". L'energia elettrica, n^2 7-8, 1985
- "Guía técnica sobre cálculo, diseño y medida de instalaciones de puesta a tierra en redes de distribución", UNESA, Diciembre 1985
- E. Gallango, "Instalaciones de puesta a tierra en redes de distribución", Palma de Mallorca, Diciembre 1986.

